
IBM Security Access Manager
Version 7.0

Plug-in for Web Servers Administration
Guide

SC23-6507-02

���

IBM Security Access Manager
Version 7.0

Plug-in for Web Servers Administration
Guide

SC23-6507-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 297.

Edition notice

Note: This edition applies to version 7, release 0, modification 0 of IBM Security Access Manager (product
number 5724-C87) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this publication xi
Intended audience xi
Access to publications and terminology xi

Related publications xiv
Accessibility xvi
Technical training xvi
Support information xvi

Chapter 1. Introducing Security Access
Manager Plug-in for Web Servers 1
Security Access Manager Plug-in for Web Servers
technology 1

Basic operational components and architecture . . 1
Plug-in features 2
Support for virtual hosts 3

The request handling process 3
Plug-in authentication 5
Credential acquisition 6

Chapter 2. Configuration 7
General plug-in information 7

Root directory of the Security Access Manager
Plug-in for Web Servers installation. 7
The pdwebpi.conf configuration file 8
The pdwebpimgr.conf configuration file 8
Starting and stopping Security Access Manager
Plug-in for Web Servers. 8
HTTP error messages 9
Macro support 9
Forms related macros 10

Configuring the Authorization Server. 11
Configuring Worker Threads. 11
Setting the Maximum Session Lifetime for IPC
requests 12

Configuring for virtual host servers 13
Web-server-specific configuration 15

Web server considerations 20
Customizing object listings 20

Command Line Arguments 21
Output 21

Customizing message and error pages 22
Modifying existing error pages 23
Creating new error pages 23

Configuring switch user (SU) for administrators . . 24
Understanding the switch user process flow . . 24
Enabling switch user 25
Configuring the switch user HTML form . . . 25
Enabling and excluding users from switch user 26
Configuring the switch user authentication
mechanism 27

Impacting other plug-in functionality 28
Configuring failover for LDAP servers 29
Supporting Platform for Privacy Preferences (P3P)
headers 30

Configuring P3P headers 31
Cross-site scripting protection 33
Configuring plug-in auditing, logging, and tracing 34

Using the Common Auditing and Reporting
Service 34
Audit records. 34
Auditing configuration 38
Tracing Plug-in actions 40

Cache database settings 42
Plug-in statistics 42
Configuring the authorization API service 42
Credential refresh 43

Configuring credential refresh 44
Configuring HTTP request caching 44

Configuring server-side caching parameters . . 45
FIPS cryptographic compliance 45
Language support and character sets 45

Chapter 3. Authentication and request
processing 49
Configuring authentication 49

Configuring authentication for virtual hosts . . 51
Configuring the order of authentication methods 53
Configuring post-authorization processing . . . 56

Authentication configuration overview 57
Local authentication mechanisms 57
External custom authentication mechanism
entries 58
Default configuration for plug-ins 58
Configuring multiple authentication methods . . 59
Logout, change of password and help commands 59
Password change issue with Active Directory on
Windows 61

Configuring Basic Authentication 61
Enabling Basic Authentication 61
Configuring the Basic Authentication mechanism 61
Setting the realm name 62
Manipulating BA headers. 62
Specify UTF-8 encoding of BA headers 64

Configuring authentication by using forms 64
Enabling forms authentication 64
Configuring the forms authentication mechanism 65
Customizing HTML response forms 65
Customizing the forms login URI 65
Creating a BA Header 66

Configuring certificate authentication 66
Mutual authentication using certificates 66
Enabling certificate authentication 67
Configuring the certificate authentication
mechanism 68

© Copyright IBM Corp. 2000, 2012 iii

Configuring authentication using RSA SecurID
tokens 68

Authentication workflow for tokens in new PIN
mode 69
Using token authentication with a password
strength server 70
Enabling token authentication 70
Configuring the token authentication mechanism 71
Customizing token response pages 71

Configuring SPNEGO authentication 72
Platform and user registry support 72
Limitations 72
Windows desktop single sign-on configuration 73
Troubleshooting for SPNEGO, Windows desktop
single sign-on, and Kerberos. 79

Configuring NTLM authentication (IIS platforms
only) 79
Configuring Web server authentication (IIS
platforms only) 80
Configuring failover authentication 81

Failover authentication concepts 81
Failover authentication configuration 86

Configuring IV header authentication 94
Enabling authentication using IV headers . . . 95
Configuring IV header parameters. 96
Specify UTF-8 encoding of IV headers 96
Configuring the IV header authentication
mechanism for iv-remote-address 96

Configuring HTTP header authentication 97
Enabling authentication using HTTP headers . . 97
Specifying header types 97
Configuring the HTTP header authentication
mechanism 98
Cookie authentication 98

Configuring IP address authentication 98
Enabling authentication using the IP address . . 99
Configuring the IP address authentication
mechanism 99

Configuring LTPA Authentication 99
Enabling LTPA Authentication 99
Setting the Key Details 100
Configuring LTPA post-authorization processing 100
Handling LtpaToken2 cookies 100

Configuring the redirection of users after logon 101
Enabling user redirection 101
Configuring user redirection parameters . . . 101

Using an external authentication service 102
Enabling the external authentication interface 103
Configuring the external authentication interface 103

Adding extended attributes for credentials . . . 106
Mechanisms for adding extended attributes to a
credential. 106
Entitlement service configuration 107

Adding registry extended attributes to the HTTP
header (tag value) 109

Enabling tag value processing 109
Configuring tag value parameters 110

Supporting Multiplexing Proxy Agents (MPA) . . 110
Valid session data types and authentication
methods 111

Authentication process flow for MPA and
multiple clients 112
Enabling MPA authentication 112
Create a user account for the MPA 113
Add the MPA account to the
pdwebpi-mpa-servers group 113

Extended CDAS User Mapping Rules 114

Chapter 4. Managing session state 115
The Session Management Server (SMS) 116

Configuring the plug-in to use the SMS . . . 117
Managing Session State in non-clustered
environments 121

Configuring the plug-in session/credentials
cache 121
Maintaining session state with the SSL session
ID 124
Maintaining session state using Basic
Authentication 124
Maintaining session state with Session Cookies 125
Maintaining session state using HTTP headers 126
Maintaining session state using IP addresses 126
Maintaining session state using LTPA cookies 127
Maintaining session state using iv-headers . . 127

Chapter 5. Security policy 129
Plug-in-specific Access Control List (ACL) policies 129

/PDWebPI/host or virtual_host. 130
Plug-in ACL permissions 130
Default /PDWebPI ACL policy 131
Changing The Mapping of HTTP Request
Methods 131

Setting a logon failure policy 132
Password strength policy 134

Password strength policy set by the pdadmin
utility 134
Specific user and global settings 136

Authentication-strength Protected Object Policy
(Step-up) 136

Configuring levels for step-up authentication 137
Enabling step-up authentication 138
Step-up authentication notes and limitations . . 139

Multi-factor authentication 139
Enabling multi-factor authentication 140

Reauthentication Protected Object Policy 140
Conditions affecting POP reauthentication . . . 141
Creating and applying the reauthentication POP 141

Network-based authentication Protected Object
Policy 142

Specifying IP addresses and ranges 142
Disabling step-up authentication by IP address 143
Network-based authentication algorithm . . . 143

Quality-of-protection Protected Object Policy . . . 144
Handling unauthenticated users (HTTP/HTTPS) 144

Processing a request from an anonymous client 144
Forcing user log on 145
Applying unauthenticated HTTPS 145
Controlling unauthenticated users with
ACL/POP policies. 145

Policy for unprotected resources 145

iv IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring the unprotected resource cache . . 147
Setting the unprotected resource cache extended
POP attribute 148

Chapter 6. Web single sign-on
solutions 149
Single sign-on concepts 149
Automatically signing-on to a secured application 150

Configuring single sign-on to secure
applications using HTTP headers 150
Single sign-on to WebSphere application server
using LTPA cookies 151

Single sign-on to the plug-in from WebSEAL or
other proxy 152

Enabling and disabling authentication using IV
headers 153
Configuring IV header parameters 153

Using the Failover cookie for single sign-on . . . 153
Enabling single sign-on using Failover cookies 154

Using global single sign-on (GSO) 154
Configuring Global single sign-on 156

Security Provider NEGOtiation (SPNEGO) single
sign-on 157
Single sign-on using forms 157

Forms single sign-on process flow 157
Requirements for application support 159
Enabling forms single sign-on 159
Configuring forms single sign-on 160
Example configuration file for IBM HelpNow 163

Chapter 7. Cross-domain sign-on
solutions 165
Cross domain single sign-on (CDSSO) 165

Authentication process flow for CDSSO . . . 165
Enabling and disabling CDSSO authentication 167
Encrypting the authentication token data . . . 167
Configuring the token time stamp 168
Including credential attributes in the
authentication tokens 168
Specify the sso-create and sso-consume libraries 169
Expressing CDSSO links. 170
Protecting the authentication token 170

e-Community single sign-on 171
e-Community single sign-on features and
requirements 171
e-Community single sign-on process flow . . . 172
The e-community cookie 173
The vouch-for request and reply 174
The vouch-for token 174
Encrypting the vouch-for token 175
Configuring an e-community 175
Configuring e-community single sign-on - an
example 181

Chapter 8. Application integration . . 185
Maintaining session state between the client and
back-end applications 185

Enabling user session ID management 185
Inserting credential data into the HTTP header 186
Terminating user sessions 187

Providing access control to dynamic URLs . . . 187
Configuring dynamic URLs 188

Chapter 9. Authorization decision
information retrieval 191
Overview of ADI retrieval 191
Retrieving ADI from the plug-in client request . . 192

Example: Retrieving ADI from the request
header. 192
Example: Retrieving ADI from the request query
string 193
Example: Retrieving ADI from the request POST
body 193

Retrieving ADI from the user credential 194
Supplying a failure reason 194
Configuring dynamic ADI retrieval 195

Configuring the plug-in to use the AMWebARS
Web service 196

Appendix A. DynADI Web service
reference 197
Basic configuration 197

Configuration files. 197
Descriptions of dynadi.conf configuration
parameters 197

Editing the data tables 199
Provider table 199
ContainerDescriptorTable 200
ProtocolTable 202

Creating custom protocol plug-ins 203
Overview. 203
Creating the protocol plug-in 203

Appendix B. Using pdbackup to
backup plug-in data 205
Functionality 205

Backing up plug-in data 205
Restoring plug-in data 206

Syntax. 206
Examples 207

UNIX examples 207
Windows examples 207
Contents of pdinfo-pdwebpi.lst 208
Additional backup data 209

Appendix C. Plug-in configuration file
reference 211
Guidelines for configuring stanzas 211

General guidelines. 211
Default values 212
Strings 212
Defined strings 212
File names 212
Integers 213
Boolean values 213

[acctmgmt] 213
[apache] 215
[auth-data] 215
[authentication-levels] 216

Contents v

[authentication-mechanisms] 216
[aznapi-configuration] 222
[aznapi-entitlement-services] 226
[BA] 227
[boolean-rules] 228
[cdsso] 228
[cdsso-token-attributes] 229
[cdsso-incoming-attributes] 230
[cdsso-domain-keys] 231
[common-modules] 231
[cred-refresh] 232
[dsess]. 233
[dsess-cluster] 235
[dsess-cluster:cluster_name] 237
[dynurl] 239
[ecsso] 240
[ecsso-domain-keys] 244
[ecsso-incoming-attributes] 245
[ecsso-token-attributes] 245
[error-pages]. 246
[ext-auth-int] 247
[failover] 248
[failover-add-attributes] 250
[failover-restore-attributes] 251
[forms] 251
[fsso] 252
[http-hdr] 252
[http-method-perms] 253
[ihs] 253
[iis]. 254
[iv-headers] 257
[ldap] 257
[login-form-1] 260
[login-redirect] 261
[ltpa] 261
[ltpa2] 262
[modules] 262

[module-mgr] 264
[ntlm] 264
[p3p-header]. 265
[pdweb-plugins] 266
[performance] 272
[proxy-if] 272
[sessions] 273
[session-cookie]. 274
[spnego] 275
[switch-user] 276
[tag-value] 276
[token] 277
[unprotected-resource-cache] 278
[user-agent] 278
[web-log] 279
[web-server-authn] 280
[wpiconfig] 280

Appendix D. Module quick reference 281

Appendix E. Command quick
reference 287
pdwebpi_start 287
pdwebpi 288
pdwpi-version 289
pdwpicfg –action config 289
pdwpicfg –action unconfig 292

Appendix F. Special characters
allowed in regular expressions 295

Notices 297

Index 301

vi IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Figures

1. Plug-in and Security Access Manager
component interaction. 2

2. Plug-in process flow for determining
authentication module. 53

3. Authentication challenge process logic. 54
4. Typical server architecture for failover cookies. 82
5. Sample dataflow for Extended Authentication

Interface 102
6. Example deployment of replica sets 116
7. Basic session flow using the SMS 117

8. Bypassing the authentication server for
unprotected resources 146

9. Unprotected resource cache POP inheritance. 147
10. User access to secure applications using GSO. 155
11. Forms single sign-on process flow. 158
12. CDSSO process flow 166
13. Logging into an e-community 173
14. e-Community single sign-on configuration

example 181
15. Attribute retrieval service process flow. 195

© Copyright IBM Corp. 2000, 2012 vii

viii IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Tables

1. Security Access Manager EPAC fields 6
2. Supported Macro Substitutions 9
3. Web-server-specific configuration parameters 16
4. Default message pages returned for error

codes 22
5. [p3p-header] parameters 31
6. Authentication audit record field definitions. 35
7. Authorization audit record field definitions. 36
8. 'wpi' audit record field definitions. 37
9. Basic auditing configuration parameter

definitions 38
10. logcfg auditing configuration parameter

definitions. 39
11. Audit event pools. These are values which

may be specified for the category part of a
logcfg configuration. 39

12. Plug-in supported languages with supported
directory. 46

13. Local Built-in Authenticators 57
14. External Authentication Mechanism Entries 58
15. strip-hdr instructions to plug-in. 63
16. Failover authentication library file names 88
17. IV header field descriptions 95

18. HTTP header authentication data 105
19. Valid session data types for MPA 111
20. Valid MPA authentication types 111
21. Plug-in ACL permissions. 130
22. Plug-in WebDAV permissions 130
23. Core entries for default-pdwebpi 131
24. pdadmin LDAP logon policy commands 133
25. pdadmin LDAP password strength

commands 135
26. Password examples 136
27. QOP level descriptions 144
28. IV header field descriptions 150
29. LTPA configuration parameters 152
30. IV header field descriptions 152
31. Plug-in authentication method/module

reference 281
32. Windows-specific authentication modules 283
33. Plug-in session module reference 283
34. Plug-in pre-authorization module reference 284
35. Plug-in post-authorization module reference 285
36. Response module reference 286
37. Transaction module reference 286

© Copyright IBM Corp. 2000, 2012 ix

x IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

About this publication

IBM Security Access Manager for Web, formerly called IBM Tivoli Access Manager
for e-business, is a user authentication, authorization, and web single sign-on
solution for enforcing security policies over a wide range of web and application
resources.

IBM Security Access Manager Plug-in for Web Servers manages the security of
your Web-based resources by acting as the gateway between your clients and
secure Web space. The plug-in implements the security policies that protect your
Web object space. The plug-in can provide single sign-on, support, Web servers
running as virtual hosts, and incorporate Web application server resources into its
security policy.

Note: For details on: supported platforms, disk and memory requirements,
software prerequisites and installation instructions for the plug-in, refer to the IBM
Security Access Manager for Web: Installation Guide.

The IBM Security Access Manager: Plug-in for Web Servers Administration Guide
provides administrative procedures and technical reference information for
securing your Web domain using the Plug-in for Web Servers application.

Intended audience
This guide is for system administrators responsible for the installation, deployment
and administration of Access Manager Plug-in for Web Servers.

Readers should be familiar with the following:
v PC and UNIX operating systems.
v Database architecture and concepts.
v Security management.
v Internet protocols, including HTTP, HTTPS and TCP/IP.
v Lightweight Directory Access Protocol (LDAP) and directory services.
v A supported user registry.
v Authentication and authorization.

If you are enabling Secure Sockets Layer (SSL) communication, you also should be
familiar with SSL protocol, key exchange (public and private), digital signatures,
cryptographic algorithms, and certificate authorities.

Access to publications and terminology
This section provides:
v A list of publications in the “IBM Security Access Manager for Web library” on

page xii.
v Links to “Online publications” on page xiii.
v A link to the “IBM Terminology website” on page xiv.

© Copyright IBM Corp. 2000, 2012 xi

IBM Security Access Manager for Web library

The following documents are in the IBM Security Access Manager for Web library:
v IBM Security Access Manager for Web Quick Start Guide, GI11-9333-01

Provides steps that summarize major installation and configuration tasks.
v IBM Security Web Gateway Appliance Quick Start Guide – Hardware Offering

Guides users through the process of connecting and completing the initial
configuration of the WebSEAL Hardware Appliance, SC22-5434-00

v IBM Security Web Gateway Appliance Quick Start Guide – Virtual Offering
Guides users through the process of connecting and completing the initial
configuration of the WebSEAL Virtual Appliance.

v IBM Security Access Manager for Web Installation Guide, GC23-6502-02
Explains how to install and configure Security Access Manager.

v IBM Security Access Manager for Web Upgrade Guide, SC23-6503-02
Provides information for users to upgrade from version 6.0, or 6.1.x to version
7.0.

v IBM Security Access Manager for Web Administration Guide, SC23-6504-02
Describes the concepts and procedures for using Security Access Manager.
Provides instructions for performing tasks from the Web Portal Manager
interface and by using the pdadmin utility.

v IBM Security Access Manager for Web WebSEAL Administration Guide, SC23-6505-02
Provides background material, administrative procedures, and reference
information for using WebSEAL to manage the resources of your secure Web
domain.

v IBM Security Access Manager for Web Plug-in for Web Servers Administration Guide,
SC23-6507-02
Provides procedures and reference information for securing your Web domain
by using a Web server plug-in.

v IBM Security Access Manager for Web Shared Session Management Administration
Guide, SC23-6509-02
Provides administrative considerations and operational instructions for the
session management server.

v IBM Security Access Manager for Web Shared Session Management Deployment Guide,
SC22-5431-00
Provides deployment considerations for the session management server.

v IBM Security Web Gateway Appliance Administration Guide, SC22-5432-00
Provides administrative procedures and technical reference information for the
WebSEAL Appliance.

v IBM Security Web Gateway Appliance Configuration Guide for Web Reverse Proxy,
SC22-5433-00
Provides configuration procedures and technical reference information for the
WebSEAL Appliance.

v IBM Security Web Gateway Appliance Web Reverse Proxy Stanza Reference,
SC27-4442-00
Provides a complete stanza reference for the IBM® Security Web Gateway
Appliance Web Reverse Proxy.

v IBM Security Access Manager for Web WebSEAL Configuration Stanza Reference,
SC27-4443-00
Provides a complete stanza reference for WebSEAL.

xii IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

v IBM Global Security Kit: CapiCmd Users Guide, SC22-5459-00
Provides instructions on creating key databases, public-private key pairs, and
certificate requests.

v IBM Security Access Manager for Web Auditing Guide, SC23-6511-02
Provides information about configuring and managing audit events by using the
native Security Access Manager approach and the Common Auditing and
Reporting Service. You can also find information about installing and
configuring the Common Auditing and Reporting Service. Use this service for
generating and viewing operational reports.

v IBM Security Access Manager for Web Command Reference, SC23-6512-02
Provides reference information about the commands, utilities, and scripts that
are provided with Security Access Manager.

v IBM Security Access Manager for Web Administration C API Developer Reference,
SC23-6513-02
Provides reference information about using the C language implementation of
the administration API to enable an application to perform Security Access
Manager administration tasks.

v IBM Security Access Manager for Web Administration Java Classes Developer
Reference, SC23-6514-02
Provides reference information about using the Java™ language implementation
of the administration API to enable an application to perform Security Access
Manager administration tasks.

v IBM Security Access Manager for Web Authorization C API Developer Reference,
SC23-6515-02
Provides reference information about using the C language implementation of
the authorization API to enable an application to use Security Access Manager
security.

v IBM Security Access Manager for Web Authorization Java Classes Developer Reference,
SC23-6516-02
Provides reference information about using the Java language implementation of
the authorization API to enable an application to use Security Access Manager
security.

v IBM Security Access Manager for Web Web Security Developer Reference,
SC23-6517-02
Provides programming and reference information for developing authentication
modules.

v IBM Security Access Manager for Web Error Message Reference, GI11-8157-02
Provides explanations and corrective actions for the messages and return code.

v IBM Security Access Manager for Web Troubleshooting Guide, GC27-2717-01
Provides problem determination information.

v IBM Security Access Manager for Web Performance Tuning Guide, SC23-6518-02
Provides performance tuning information for an environment that consists of
Security Access Manager with the IBM Tivoli Directory Server as the user
registry.

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

About this publication xiii

IBM Security Access Manager for Web Information Center
The http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.isam.doc_70/welcome.html site displays the information center
welcome page for this product.

IBM Publications Center
The http://www-05.ibm.com/e-business/linkweb/publications/servlet/
pbi.wss site offers customized search functions to help you find all the IBM
publications that you need.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

Related publications
This section lists the IBM products that are related to and included with the
Security Access Manager solution.

Note: The following middleware products are not packaged with IBM Security
Web Gateway Appliance.

IBM Global Security Kit

Security Access Manager provides data encryption by using Global Security Kit
(GSKit) version 8.0.x. GSKit is included on the IBM Security Access Manager for Web
Version 7.0 product image or DVD for your particular platform.

GSKit version 8 includes the command-line tool for key management,
GSKCapiCmd (gsk8capicmd_64).

GSKit version 8 no longer includes the key management utility, iKeyman
(gskikm.jar). iKeyman is packaged with IBM Java version 6 or later and is now a
pure Java application with no dependency on the native GSKit runtime. Do not
move or remove the bundled java/jre/lib/gskikm.jar library.

The IBM Developer Kit and Runtime Environment, Java Technology Edition, Version 6
and 7, iKeyman User's Guide for version 8.0 is available on the Security Access
Manager Information Center. You can also find this document directly at:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/
60/iKeyman.8.User.Guide.pdf

Note:

GSKit version 8 includes important changes made to the implementation of
Transport Layer Security required to remediate security issues.

The GSKit version 8 changes comply with the Internet Engineering Task Force
(IETF) Request for Comments (RFC) requirements. However, it is not compatible
with earlier versions of GSKit. Any component that communicates with Security
Access Manager that uses GSKit must be upgraded to use GSKit version 7.0.4.42,
or 8.0.14.26 or later. Otherwise, communication problems might occur.

xiv IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf

IBM Tivoli Directory Server

IBM Tivoli Directory Server version 6.3 FP17 (6.3.0.17-ISS-ITDS-FP0017) is included
on the IBM Security Access Manager for Web Version 7.0 product image or DVD for
your particular platform.

You can find more information about Tivoli Directory Server at:

http://www.ibm.com/software/tivoli/products/directory-server/

IBM Tivoli Directory Integrator

IBM Tivoli Directory Integrator version 7.1.1 is included on the IBM Tivoli Directory
Integrator Identity Edition V 7.1.1 for Multiplatform product image or DVD for your
particular platform.

You can find more information about IBM Tivoli Directory Integrator at:

http://www.ibm.com/software/tivoli/products/directory-integrator/

IBM DB2 Universal Database™

IBM DB2 Universal Database Enterprise Server Edition, version 9.7 FP4 is provided
on the IBM Security Access Manager for Web Version 7.0 product image or DVD for
your particular platform. You can install DB2® with the Tivoli Directory Server
software, or as a stand-alone product. DB2 is required when you use Tivoli
Directory Server or z/OS® LDAP servers as the user registry for Security Access
Manager. For z/OS LDAP servers, you must separately purchase DB2.

You can find more information about DB2 at:

http://www.ibm.com/software/data/db2

IBM WebSphere® products

The installation packages for WebSphere Application Server Network Deployment,
version 8.0, and WebSphere eXtreme Scale, version 8.5.0.1, are included with
Security Access Manager version 7.0. WebSphere eXtreme Scale is required only
when you use the Session Management Server (SMS) component.

WebSphere Application Server enables the support of the following applications:
v Web Portal Manager interface, which administers Security Access Manager.
v Web Administration Tool, which administers Tivoli Directory Server.
v Common Auditing and Reporting Service, which processes and reports on audit

events.
v Session Management Server, which manages shared session in a Web security

server environment.
v Attribute Retrieval Service.

You can find more information about WebSphere Application Server at:

http://www.ibm.com/software/webservers/appserv/was/library/

About this publication xv

http://www.ibm.com/software/tivoli/products/directory-server
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/data/db2
http://www.ibm.com/software/webservers/appserv/was/library/

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

Visit the IBM Accessibility Center for more information about IBM's commitment
to accessibility.

Technical training
For technical training information, see the following IBM Education website at
http://www.ibm.com/software/tivoli/education.

Support information
IBM Support provides assistance with code-related problems and routine, short
duration installation or usage questions. You can directly access the IBM Software
Support site at http://www.ibm.com/software/support/probsub.html.

The IBM Security Access Manager for Web Troubleshooting Guide provides details
about:
v What information to collect before you contact IBM Support.
v The various methods for contacting IBM Support.
v How to use IBM Support Assistant.
v Instructions and problem-determination resources to isolate and fix the problem

yourself.

Note: The Community and Support tab on the product information center can
provide more support resources.

xvi IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

http://www-03.ibm.com/able/
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html

Chapter 1. Introducing Security Access Manager Plug-in for
Web Servers

Security Access Manager Plug-in for Web Servers implements security policy for
your protected Web space. Installed as part of the same process as your Web
server, the plug-in acts as the security gateway between your clients and your
protected Web space.

This introductory chapter gives an overview of Security Access Manager Plug-in
for Web Servers technology, identifies the technical requirements for the product
and provides an introduction to the processes for ensuring the security of your
Web space using the plug-in.

Note: For details on supported platforms, disk and memory requirements,
software prerequisites and installation instructions, see the IBM Security Access
Manager for Web: Installation Guide. For details on upgrading Security Access
Manager Plug-in for Web Servers to version 7.0 see the IBM Security Access
Manager for Web: Upgrade Guide.

This introductory chapter contains the following topics:
v “Security Access Manager Plug-in for Web Servers technology”
v “The request handling process” on page 3
v “Plug-in authentication” on page 5
v “Credential acquisition” on page 6

Security Access Manager Plug-in for Web Servers technology

The plug-in can be integrated with IBM Security Access Manager for Web to
provide a complete security solution for your Web resources. The plug-in operates
as part of the same process as your Web server, intercepting each request that
arrives, determining if an authorization decision is required and providing a means
for user authentication if necessary. The plug-in can provide single sign-on
solutions and incorporate Web application resources into its security policy.

Basic operational components and architecture

Security Access Manager Plug-in for Web Servers consists of two basic
components; the plug-in and the authorization server. The plug-in accepts all
requests to the Web server. Requests that have been identified through policy as
not requiring authorization are passed directly to the Web server for processing.
Other requests are passed to the authorization server.

The authorization server determines which virtual host the request is addressed to
(if virtual hosts are present on the Web server) and determines if the request
requires authorization. Requests that require authorization are processed by the
authorization server.

© Copyright IBM Corp. 2000, 2012 1

Plug-in features

Security Access Manager Plug-in for Web Servers provides the following features:
v It supports multiple authentication methods, including basic authentication, IP

address (IPv4 and IPv6), token, certificates, and forms, among others.
v Accepts HTTP and HTTPS requests.
v Protects Web server resources by authenticating and authorizing user requests

that are dependant on organizational policy.
v Supports the authentication and authorization of requests in a virtual host

environment.
v Manages access control to the Web server space. Supported resources include

URLs, URL-based regular expressions, CGI programs, HTML files, Java servlets,
and Java class files.

v Caches session and credential information to eliminate repetitive queries to the
user registry database during authorization checks.

v Provides single sign-on capabilities

Security policy using the plug-in

A corporate security policy identifies the Web resources requiring protection and
the level of protection required for each of those Web resources. Security Access
Manager uses a virtual representation of these Web resources, called the protected
object space. The protected object space contains objects that represent actual
physical resources in your network. You implement security policy by applying the
appropriate security mechanisms to the objects requiring protection.

Security mechanisms include:
v Access control list (ACL) policies

Figure 1. Plug-in and Security Access Manager component interaction.

2 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

ACL policies identify user types that can be considered for access and they
specify the operations permitted on the object for each user type.

v Protected object policies (POP)
A POP specifies additional conditions governing the access to the protected
object, such as privacy, integrity, auditing, and time-of-day access.

v Authorization rules
Authorization rules are conditions contained in an authorization policy that are
used to make access decisions based on attributes such as user, application, and
environment context.

v Extended attributes
Extended attributes are additional values placed on an object, ACL, or POP that
can influence an authorization decision.

To successfully implement security policy, you must logically organize the different
content types and apply the appropriate ACL and POP policies. Access control
management can be complex and is made easier by careful categorization of the
content types. Comprehensive information on Security Access Manager including
details of setting policy can be found in the IBM Security Access Manager for Web:
Base Administration Guide.

For access to resources that do not require authentication, the plug-in supports a
special cache called the unprotected resource cache. This cache identifies objects
that can accept unauthenticated requests thus bypassing the need to engage the
authorization server.

Support for virtual hosts

A single Web server can appear as more than one host to the Internet by using
virtual hosts. The Web servers supported by Security Access Manager Plug-in for
Web Servers all provide virtual hosting capability.

Security Access Manager Plug-in for Web Servers provides the capability to
implement security policy on a per virtual-host-basis.

The request handling process
Security Access Manager Plug-in for Web Servers processes each Web request as it
arrives at the Web server.

There are eight steps to the request handling process:
1. Virtual host identification

Requests are examined to determine the destination virtual host for the request.
2. Session identification

Once the virtual host has been determined the request is examined for existing
authenticated session information. This information may be either a session
cookie or SSL session ID. The information that is used for identifying the
session is determined by the configured session modules or in replicated
plug-in environments the session management server can be used.

3. Authentication

If no existing session is identified, the request is examined for authentication
information. This may be information such as a Basic Authentication user name

Chapter 1. Introduction to Plug-in for Web Servers 3

and password, a submission to a login form, or a client certificate. The
information that is used for authenticating the client is determined by the
configured authentication modules.
If valid authentication information exists in the request, a new authenticated
user session is created. If no authentication information is present, the request
is treated as unauthenticated.
If invalid authentication information is present in the request and the
authentication method supports re-entry (for example, Basic Authentication) of
authentication information then the user is challenged to provide their
authentication again. If the authentication method does not support re-entry
(for example, client certificate) an error is returned to the client. For more
information about plug-in authentication, see “Plug-in authentication” on page
5.

4. Pre-authorization

In some cases, initial request processing may be required before access to a
requested resource is authorized. This processing is performed by configured
pre-authorization modules. Pre-authorization modules provide functions that
do not require authorization or they support capabilities that require access to
the request prior to the authorization decision.

5. Authorization

During the authorization, Security Access Manager policy is consulted using
the credential information associated with the session to determine whether
access should be granted to the requested resource and if so under what
conditions.

6. Authentication upgrade

In cases where the authentication level of the user is inappropriate for accessing
a requested resource or a request is unauthenticated, the request is examined
again for authentication information that would authenticate the user at the
required authentication level.
If no such information exists, and an authentication module that supports the
ability to challenge the user for information at the required authentication level
is configured, then the user is challenged to provide such information. If there
is no means to upgrade the authenticated user session to a sufficient level to
access the resource, access is denied.

7. Post-authorization

Occasionally, after the authorization decision has occurred, certain processing
may be required to:
v Modify the Web request before it is handled by the Web server. For example,

to insert a header,
v Modify the Web response generated by the Web server. For example, to set a

cookie,
v Generate a complete response without the Web server handling the request.

For example, processing redirects the user to a particular page after a
successful logon.

These operations occur after the result of the authorization process is known
since the decision may affect how the request should be handled. These
capabilities are provided by post-authorization modules.

8. Response handling

Functions such as Forms Single Sign-on (FSSO) and External Authentication
Interface (EAI) processing require the response generated by the Web server to
be processed by the plug-in rather than being sent to the client. Generally, with

4 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

response handling, the plug-in processes responses from the Web server before
passing an alternative response to the user. Modules that require this capability
are called response modules.

Plug-in authentication

Authentication is the method of identifying an individual process or entity
attempting to log on to a secure domain. Authorization is the method of
determining whether an authenticated user has the right to perform an operation
on a specific resource. Authentication ensures that the individual is who they claim
to be, but says nothing about the ability to perform operations on a resource.

Security Access Manager Plug-in for Web Servers enforces a high degree of
security in a secure domain by requiring each client to provide proof of identity.
Comprehensive network security can be provided by having the plug-in control
the authentication and authorization of clients.

The following conditions apply to plug-in authentication:
v The plug-in supports a standard set of authentication methods. You can

customize the plug-in to support other authentication methods.
v The plug-in process is independent of the authentication method.
v The plug-in requires only a client identity. From this identity, the plug-in obtains

an authenticated (or unauthenticated) credential that can be used by the
authorization server to permit or deny access to resources.

This flexible approach to authentication allows security policy to be based on
business requirements and not physical network topology.

The plug-in authentication process results in the following actions:
1. Client authentication results in a client identity.

Client authentication is only successful if the user has an account defined in the
Security Access Manager user registry. Otherwise the user is designated as
unauthenticated.

2. Security Access Manager Plug-in for Web Servers uses the client identity to
acquire credentials for that client.
The plug-in matches the authenticated client identity with a registered Security
Access Manager user. The plug-in then obtains the appropriate user credentials.
This is known as credential acquisition.
Credentials include the user name and any groups where the user has
membership. These credentials are available to the plug-in that permits or
denies access to requested objects in the Security Access Manager protected
object space.
Credentials can be used by any Security Access Manager service that requires
information about the client. Credentials allow Security Access Manager to
securely perform a multitude of services such as authorization, auditing, and
delegation.
See Chapter 3, “Authentication and request processing,” on page 49 for further
information about support for specific authentication methods.

Chapter 1. Introduction to Plug-in for Web Servers 5

Credential acquisition

The primary goal of the authentication process is to acquire credential information
describing the client user. The user credential is a key requirement for participating
in the secure domain.

Security Access Manager distinguishes the authentication of the user from the
acquisition of credentials. An identity of a user is always constant. However,
credentials that define the groups or roles in which a user participates are variable.
Context-specific credentials can change over time. For example, when a person is
promoted, credentials must reflect the new responsibility level.

The authentication process results in method-specific user identity information.
This information is checked against user account information that resides in the
Security Access Manager user registry (LDAP by default). Security Access Manager
Plug-in for Web Servers maps the user name and group information to a common
domain-wide representation and format known as the extended privilege attribute
certificate (EPAC).

Method-specific identity information, such as passwords, tokens, and certificates,
represent physical identity properties of the user. This information can be used to
establish a secure session with the server.

The resulting credential, which represents privileges of a user in the secure
domain, describes the user in a specific context and is valid only for the lifetime of
that session.

Security Access Manager credentials contain the user identity and groups where
this user has membership.

Credentials are used by any Security Access Manager service that requires
information about the client. For example, the Security Access Manager
authorization server uses credentials to determine whether a user is authorized to
perform specific operations on a protected resource in the secure domain.
Credentials are also used in other tasks such as logging and auditing.

EPACs contain the Unique Universal Identifiers (UUIDs) that Security Access
Manager needs to work with access control lists (ACLs).

The following EPAC fields are appropriate to Security Access Manager:

Table 1. Security Access Manager EPAC fields

Attribute Description

Secure Domain ID Principal's home secure domain identifier

Principal UUID UUID of the principal

Group UUIDs UUID(s) of groups to which the principal belongs

Security Access Manager Plug-in for Web Servers can be configured to refresh
credential information for a user while keeping their session current. This is useful
functionality in cases when a user requires extra access to certain secure
applications or when you want to restrict access of a user without having the user
log out of their current session. For more information on configuring the plug-in
for credential refresh see “Credential refresh” on page 43.

6 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 2. Configuration

This chapter describes general administration and configuration tasks you can
perform to customize IBM Security Access Manager (Security Access Manager)
Plug-in for Web Servers.

Topics in this chapter include:
v “General plug-in information”
v “Configuring the Authorization Server” on page 11
v “Configuring for virtual host servers” on page 13
v “Web-server-specific configuration” on page 15
v “Customizing object listings” on page 20
v “Customizing message and error pages” on page 22
v “Configuring switch user (SU) for administrators” on page 24
v “Configuring failover for LDAP servers” on page 29
v “Supporting Platform for Privacy Preferences (P3P) headers” on page 30
v “Configuring plug-in auditing, logging, and tracing” on page 34
v “Cache database settings” on page 42
v “Plug-in statistics” on page 42
v “Configuring the authorization API service” on page 42
v “Credential refresh” on page 43
v “Configuring HTTP request caching” on page 44
v “FIPS cryptographic compliance” on page 45
v “Language support and character sets” on page 45

General plug-in information

The following sections describe general information about Security Access Manager
Plug-in for Web Servers configuration:
v “Root directory of the Security Access Manager Plug-in for Web Servers

installation”
v “The pdwebpi.conf configuration file” on page 8
v “The pdwebpimgr.conf configuration file” on page 8
v “Starting and stopping Security Access Manager Plug-in for Web Servers” on

page 8
v “HTTP error messages” on page 9
v “Macro support” on page 9
v “Forms related macros” on page 10

Root directory of the Security Access Manager Plug-in for
Web Servers installation

The Security Access Manager Plug-in for Web Server's program files are installed
in the following root directory:

UNIX:

© Copyright IBM Corp. 2000, 2012 7

/opt/pdwebpi/

Windows:
C:\Program Files\Tivoli\PDWebPI\

You can configure this path during a Windows installation of the plug-in. You
cannot configure this path on UNIX installations. This guide uses the install_path
variable to represent this root directory.

On UNIX installations, the following separate directory contains expandable files,
such as audit and log files:
/var/pdwebpi/

Log files are written to the common Tivoli® Directory if this was selected during
the configuration of the Security Access Manager runtime.

The pdwebpi.conf configuration file

You can customize the operation of the plug-in by configuring the parameters
located in the pdwebpi.conf configuration file. The file is located in the following
directory:

UNIX:
install_path/etc/

Windows:
install_path\etc\

See Appendix C, “Plug-in configuration file reference,” on page 211 for a
description of the configurable parameters within the pdwebpi.conf configuration
file.

Note: Anytime you make a change to the pdwebpi.conf file, you must manually
restart Security Access Manager Plug-in for Web Servers so that the new changes
are recognized. See “Starting and stopping Security Access Manager Plug-in for
Web Servers” for information on starting and stopping the application.

The pdwebpimgr.conf configuration file

UNIX installations of the plug-in include the configuration file pdwebpimgr.conf.
This configuration file contains parameters that are used to automatically re-start
the authorization daemon if it has failed.

The file is located in the directory:
install_path/etc/

There is no reason why you should need to change the parameters in this file.

Starting and stopping Security Access Manager Plug-in for
Web Servers

To start and stop the plug-in process, use the pdwebpi_start command on UNIX
and use the Services Control Panel on Windows.

UNIX:

8 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

pdwebpi_start {start|stop|restart|status}

For example, to stop the plug-in and then restart it, use:
pdwebpi_start restart

The pdwebpi_start command is located in the following directory:
install_path/sbin/

Windows:
Identify the plug-in process in the Services Control Panel and use the appropriate
control buttons.

Note: pdwebpi is the authorization server process. On UNIX installations, the
process pdwebpimgrd automatically restarts the authorization server if it fails. On
Windows, the authorization server is automatically restarted by Windows services.

HTTP error messages

Sometimes Security Access Manager Plug-in for Web Servers attempts to service a
request and fails. There can be many causes for this failure. Two common causes of
failure are:
v A file does not exist.
v Permission settings forbid access.

When a failure to service a request occurs, the plug-in returns an error code to the
Web server, which interprets the error code and displays a corresponding error
page.

Customizing the display of IIS error messages

IIS provides the ability to customize the format and content of error pages
displayed to clients. This is useful for displaying more detailed error information
to clients. The plug-in can utilize this error customization facility within IIS.

Using the use-error-pages parameter within the [iis] stanza of the pdwebpi.conf
configuration file you can choose whether IIS configured error pages or the
standard error code pages are returned to the client browser. Set to yes, the
use-error-pages parameter causes the plug-in to utilize any customized IIS error
pages. Set to no, standard error pages are displayed for errors encountered by the
Authorization Server. By default the use-error-pages parameter is set to no.

Note: Setting use-error-pages to yes, thus allowing the display of customized IIS
error pages for Authorization Server errors, results in a significant degradation in
plug-in performance.

Macro support

The following macros are available for use in customizing HTML error pages.
Macros dynamically substitute appropriate information that is available. Macros
are available for use in forms or can be passed in URLs, or both. This ability is
indicated in the right-hand columns of the table.

Table 2. Supported Macro Substitutions

Macro Description Forms URL

%user name% The name of the logged-in user. Y Y

Chapter 2. Configuration 9

Table 2. Supported Macro Substitutions (continued)

Macro Description Forms URL

%ERROR_CODE% A numeric error code associated with an error. Y Y

%ERROR_TEXT% Error text associated with an error. Y N

%METHOD% The HTTP method used for the corresponding
request.

N Y

%URL% The URL requested by the client. Y Y

%HOSTNAME% Fully qualified hostname. Y Y

%PROTOCOL% The protocol, either HTTP or HTTPS, used in
the corresponding request.

N Y

%HTTP_BASE% Base HTTP URL of the server:
http://host:tcpport/

Y N

%HTTPS_BASE% Base HTTPS URL of the server:
https://host:sslport/

Y N

%HTTP_BODY% The body of the request, if one exists. Y N

%REFERER% The value of the referer header from the
request, or 'Unknown' if none.

Y Y

%BACK_URL% The value of the referer header from the
request, or '/' if none.

Y Y

%BACK_NAME% The value 'BACK' if a referer header is present
in the request, or 'HOME' if none.

Y N

%POST_URL% The configured POST URL for any of the
Security Access Manager supplied forms.

Y N

%COOKIES% Any cookies that are found in the request. Y N

%CUSTOM% A 'custom' macro that can be used by the
different plug-in components to insert custom
information.

Y N

%AUTHNLEVEL% The authentication level at which the credential
is currently authenticated.

N Y

%OLDSESSION% This macro is available for forms based
authentication mechanisms and redirect URI
based mechanisms; that is, forms, token and
external authentication interfaces. It is set to 1 if
an old session cookie was detected and an
empty string if no old session was detected.
This is useful for providing users with an
explanation that their session timed out.

Y Y

Forms related macros

Security Access Manager Plug-in for Web Servers provides the following forms,
located in the /opt/pdwebpi/nls/html/lang/charset directory:
v switchuser
v token
v forms login
v change password

These forms have been configured with the %POST_URL% macro. The
%POST_URL% macro allows the plug-in to resend any POST data which might

10 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

have been included in the original request. Without the %HTTP_BODY% macro
any POST data provided with the original request is lost once the plug-in has
finished processing the form.

The default forms have also been configured to cache any necessary session data
within the form itself. This session data includes the originally requested URL, the
referer for the originally requested URL, and the body of the original request.

Configuring the Authorization Server
Most authorization and authentication processing is handled by the Authorization
Server.

The Authorization Server provides a pool of worker threads that:
v Accepts requests from the plug-in.
v Sends results of each request back to the plug-in.

The plug-in communicates with the Authorization Server through an IPC
mechanism that is implemented by using shared memory. The [proxy-if] stanza
in the pdwebpi.conf configuration file specifies configuration parameters that
pertain to communication between the plug-in and the Authorization Server.

Configuring Worker Threads

The number-of-workers and the worker-size parameters in the [proxy-if] stanza of
the configuration file, specify values that can be tuned to provide optimal plug–in
Authorization Server performance. Consider the quantity and type of traffic on
your network when setting these values.
[proxy-if]
number-of-workers = 10
worker-size = 10000
cleanup-interval=300

The number-of-workers parameter specifies the number of concurrent incoming
requests that can be serviced by the plug-in. Requests that arrive when all worker
threads are busy are buffered until a worker thread becomes available.

This parameter simply specifies the number of threads made available to service a
potentially unlimited work queue. The parameter should be increased according to
the maximum number of requests you expect the Web server to accept
simultaneously. On UNIX platforms the operating system may impose limits on
this value.

By increasing the number of threads, you are, in general, decreasing the average
time it takes to finish the requests. However, increasing the number of threads
impacts other factors that could have an adverse effect on server performance.

The pdwebpi.threads statistic can be monitored to determine thread activity. This
statistic reports the total number of worker threads active at any instant of time.

If this statistic shows that the number of active threads is consistently at the
number of configured threads, then better throughput may be obtained by
increasing the number of worker threads. No benefit will be obtained if the CPU

Chapter 2. Configuration 11

utilization of the system is already at 100% since an increase in threads can only
increase throughput if there is processing power available for use by the extra
threads.

The worker-size parameter defines the amount of shared memory that is allocated
to each worker thread. This shared memory is used to pass information between
the Web server plug-in and the authorization server.

The size of this shared memory must be sufficient to transfer the request and
response information, which is needed by the authorization server to perform its
configured functions. The size needs to be sufficient to transfer any given HTTP
request that the Web server receives to the authorization server, including the
HTTP request headers and body.

Similarly, if you enable features that require configuration of a response module,
then the shared memory must be large enough to contain any response that needs
to be processed, including response headers. Some additional memory is consumed
as overhead by the plug-in.

Allow an additional 50% of the expected maximum request size (or response size if
response modules are configured) to provide for this overhead. If the worker-size
setting you are using is not sufficient, your errors will be reported in the Web
server plug-in error log or the authorization server log, depending on which
component detected insufficient memory.

Note: On UNIX and Linux systems, the Security Access Manager Plug-in for Web
Servers uses System V shared memory segments and semaphores to communicate
between the plug-in and the authorization server. The parameters that may require
tuning on Solaris, AIX® and Linux systems are described in the IBM Security Access
Manager for Web: Performance Tuning Guide.

The cleanup-interval is the time in minutes between successive clean-ups of the
Authorization Server's shared memory.

Note: Change the cleanup-interval and worker-size parameters only to
troubleshoot performance problems.

Setting the Maximum Session Lifetime for IPC requests

The max-session-lifetime parameter in the [proxy-if] stanza of the pdwebpi.conf
configuration file sets the time in seconds that the plug-in will wait for a response
from the Authorization Server before timing out. This parameter relates only to the
short-lived "session" that is established between the plug-in and the Authorization
Server for request handling. If such a timeout occurs, an error page is sent to the
client. Such timeouts are highly unlikely.
[proxy-if]
max-session-lifetime = 300

Note: The max-session-lifetime parameter does not control the lifetime of
authenticated sessions. Authenticated session lifetime is controlled by the timeout
parameter in the [sessions] stanza.

12 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring for virtual host servers

Virtual hosts are identified to Security Access Manager Plug-in for Web Servers by
an arbitrary name that is set in the [pdweb-plugins] stanza of the pdwebpi.conf
configuration file.

The plug-in can apply distinct security policy according to two characteristics of a
request:
v An ID for the virtual host to which the request was addressed.
v The protocol (http or https) over which the request arrived.

The virtual host ID is derived from the host Web server's configuration information
and is Web-server specific. It is determined as follows:

IHS and Apache The configuration algorithm used to construct virtual host IDs is as
follows:

1. If a ServerName directive exists inside a <VirtualHost {hosta}:{port}
{hostb}:{port}...> block, that name is used for constructing the object
space for every host in the virtual host list. No attempt is made to
resolve the supplied servername into a fully qualified hostname.

2. If there is no ServerName directive inside the VirtualHost block and
the host names in the list are not numeric IP addresses, an attempt is
made to fully qualify each name and then create object spaces for
each distinct host name.

3. If there is no ServerName directive inside the VirtualHost block and
the host names in the list are numeric IP addresses, an attempt is
made to resolve each IP address to a fully qualified host name.

4. If there is still no host name and there is a name specified in a global
ServerName directive, that name is used (without resolving).

5. If there is no global ServerName directive, the fully qualified version
of the host name of the system is used.

IIS The ID corresponds exactly to the Web site name as shown in the
Internet Information Services management snap-in. For example, the
default Web site created when IIS is configured is named "Default Web
Site", this is the ID used by Security Access Manager Plug-in for Web
Servers.

Security Access Manager Plug-in for Web Servers defines security policy in terms
of virtual hosts. A Security Access Manager Plug-in for Web Servers virtual host is
identified by a virtual host ID as defined above and the set of protocols (http, https
or both) that it should protect.

The virtual host defines the set and precedence of authentication schemes, session
identification schemes, and post-authorization handling that should be applied to
requests to the Web server virtual host over one of the matching protocols. The
virtual host also defines the mapping of URIs to Security Access Manager
Protected Object Space names.

Security Access Manager Plug-in for Web Servers virtual hosts are defined in the
[pdweb-plugins] stanza of the configuration file. They may be defined as either
protected or unprotected.

An unprotected virtual host will have no Security Access Manager security policy
applied to it. If a request is received that does not match one of the defined
protected or unprotected virtual hosts, a warning message is generated in the

Chapter 2. Configuration 13

Authorization Server's log file indicating the virtual host ID and the protocol of the
request and the request is granted access. This facilitates diagnosis of configuration
problems.

Protected virtual hosts are defined by the virtual-host parameter of the
[pdweb-plugins] stanza. Unprotected virtual hosts are defined by the
unprotected-virtual-host parameter of the [pdweb-plugins] stanza. The virtual
host name used, typically corresponds to the virtual host ID that this virtual host
matches but this is not necessarily always the case. It is the virtual host names
defined in the [pdweb-plugins] stanza that are used to define virtual host-specific
security policy.

The security policy for a particular virtual host is defined by the configuration
parameters specified in a stanza with the name of the virtual host. All of the
parameters that may be defined in the virtual host stanza have appropriate default
values so it is not necessary to have a stanza for each virtual host. It is necessary to
have such a stanza only if the security policy for the virtual host differs from the
default.

Two parameters of the virtual host are used to match an incoming request to the
virtual host that defines the security policy that should be applied to the request.
These parameters are id and protocols.

The id parameter is defined to be the virtual host ID that this virtual host will
match. The default value for the id parameter is the virtual host name itself.

The protocols parameter defines the set of protocols that the virtual host will
match. This value may be http, https or both. The default value is both.

The remaining parameters of the virtual host define the security policy that should
be applied to requests matching this virtual host.

Virtual hosts are associated with a particular sub-branch of the protected object
space. A request's URI is prefixed with this sub-branch to construct a protected
object space name. This protected object space name is used for making
authorization decisions. The branch configuration parameter defines the name of
this protected object space.
[virtual_host_name]
branch = virtual_host_id

If the virtual host ID value has no leading backslash (/), the entry is prefixed with
/PDWebPI/.

The branch parameter defaults to the value of the id parameter resulting in a
default object name prefix of /PDWebPI/virtual-host-id.

Virtual host branches explained
During plug-in configuration an objectspace is created called /PDWebPI. Within
this objectspace, entries are created for each of the virtual hosts protected by the
plug-in.

The objectspace under a virtual host object is owned by the plug-in Authorization
Server that performs authorization decisions for resources in the virtual host object
space. By default, the branch of the objectspace used for a virtual host takes its
name from the virtual host ID. If a different branch of the /PDWebPI objectspace is

14 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

to be used then the branch extension is used to specify this. Branches may be
shared between virtual hosts. This may happen when virtual hosts are aliases of
each other.

Note: When a branch is changed, an object needs to be created with the new
name. Any ACLs attached under the old branch stay attached to the now
non-existent objects.

Following is an example showing the configuration parameters required for a Web
server that has four virtual hosts:
v ibm.com®

v lotus.com-HTTP
v lotus.com-HTTPS
v domino.com

The virtual hosts lotus.com-HTTP and lotus.com-HTTPS are really the same virtual
host as they share the same branch; however they are distinguished by the type of
access (HTTP or HTTPS). In this case, authentication configuration can be set
differently depending on the type of access. domino.com is not protected by the
plug-in and ibm.com is another virtual host on the same server.
[pdweb-plugins]
virtual-host = ibm.com
virtual-host = lotus.com-HTTPS
virtual-host = lotus.com-HTTP
unprotected-virtual-host = domino.com

web-server = iis

[lotus.com-HTTPS]
id = lotus.com
protocols = https
branch = lotus.com

[lotus.com-HTTP]
id = lotus.com
protocols = http
branch = lotus.com

[ibm.com]
id = ibm.com
protocols = http, https
branch = ibm.com

Be sure to restart the Web Server each time you make a change to the
configuration for virtual hosts in the pdwebpi.conf configuration file.

Further configuration on a per virtual host basis is necessary to set the
authentication parameters for each individual virtual host. See “Configuring
authentication for virtual hosts” on page 51 for details on configuring
authentication methods for virtual hosts.

Web-server-specific configuration

Some of the actions of a plug-in are specific to the Web server and therefore
require particular configuration, depending on the Web server type on which the
plug-in is operating. Use the web-server parameter in the [pdweb-plugins] stanza
of the pdwebpi.conf configuration file to define your Web server type. Valid values
are ihs, iplanet, iis or apache. For example:

Chapter 2. Configuration 15

[pdweb-plugins]
web-server = ihs

Web-server-specific configuration items exist in the [iis], [ihs], [apache] and
[iplanet] stanzas of the pdwebpi.conf configuration file.

Some Web server configuration parameters can be set on a per branch basis by
appending the full virtual host branch to the stanza. For example,
[iplanet:/PDWebPI/lotus.com]. Parameters related to browsing the Web space can
be configured this way.

The following table explains the configurable parameters for specific Web server
types.

Table 3. Web-server-specific configuration parameters

Parameter Description

[ihs]

query-contents Specifies the query contents program to use for browsing
the IBM HTTP Server Web space by the 'pdadmin> object
list' command. This parameter can be overridden on a per
branch basis by specifying a value for it in a stanza named
[ihs: branch] for example [ihs:/PDWebPI/lotus.com]

query-log-file Location of log file for errors encountered by the query
contents program.

doc-root Specifies the documentation root that provides the Web
space browse capability needed for performing 'pdadmin>
object list' commands. This parameter is set by the
configuration utility when setting up virtual hosts - it is
specified on a per-policy branch basis in an [ihs:branch]
stanza, for example [ihs:/PDWebPI/lotus.com]

[apache]

query-contents Specifies the query contents program to use for browsing
the Apache Web space by the 'pdadmin> object list'
command. This parameter can be overridden on a per
branch basis by specifying a value for it in a stanza named
[apache:branch] for example [apache:/PDWebPI/lotus.com]

query-log-file Location of log file for errors encountered by the query
contents program.

doc-root Specifies the documentation root that provides the Web
space browse capability needed for performing 'pdadmin>
object list' commands. This parameter is set by the
configuration utility when setting up virtual hosts - it is
specified on a per-policy branch basis in an
[apache:branch] stanza, for example [apache:/PDWebPI/
lotus.com]

[iis]

query-contents Specifies the query contents program for browsing the IIS
Web space by pdadmin. This parameter can be overridden
on a per branch basis by specifying a value for it in a
stanza named [iis:branch], for example,
[iis:/PDWebPI/lotus.com]

query-log-file Location of log file for errors encountered by the query
contents program.

16 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 3. Web-server-specific configuration parameters (continued)

Parameter Description

log-file Defines the log file for error and trace messages from the
IIS plug-in, that are kept separate from the Authorization
Server's log file in order to ensure consistency of the files.
If specified as a relative path, the location is relative to the
log sub-directory of the installation directory. If specified
as an absolute path, the absolute path is used.

use-error-pages In certain situations the authorization server will need to
send an error code to the client; for example, in the case of
a request for authorization information - 401.The IIS server
can be configured to send back a specific body for these
error codes.

This parameter controls whether the IIS configured pages
for the error code are sent back to client, or whether some
simple constructed pages are sent instead. System
performance may be effected if the IIS error pages are
chosen.

iis5-always-in-data-stream For IIS 5 (Windows 2000), some applications also
implemented as IIS filters generate additional Web server
requests while performing their own processing.

In order for these requests to be intercepted, the Security
Access Manager Plug-in for Microsoft IIS must be
configured to always remain in the data stream.

For performance reasons, the Security Access Manager
Plug-in will normally remove itself from the data stream
when it has finished processing a request. To force the
plug-in to remain in the data stream and ensure that
requests generated by other filters during their processing
are intercepted, you must enable this configuration
parameter.

This parameter may NOT be overridden on a per-virtual
host basis. Any changes to this parameter require IIS to be
restarted before they will take effect.

By default, the Security Access Manager Plug-in removes
itself from the data stream when it has finished processing
a request.

This configuration parameter is specific to IIS 5 (Windows
2000) and is ignored for later versions.

Chapter 2. Configuration 17

Table 3. Web-server-specific configuration parameters (continued)

Parameter Description

authenticate-by-redirect This parameter controls whether or not redirects are used
to trigger Web server authentication (web-server-authn
authentication module) or client certificate authentication
(cert authentication module).

By default redirects are used. This ensures that all
application types that may be hosted by IIS can be
protected by these IBM Security Access Manager for Web
authentication modules.

If redirects are not used, the type of application that may
not be protected by IBM Security Access Manager for Web
are those that are implemented as IIS filters.

Since these authentication methods require interaction
with the IBM Security Access Manager for Web IIS
extension, an IIS filter application that handles the request
(typically based on URL pattern matching) may
completely handle the request prior to control being
passed to the extension. To ensure that the extension gains
control, the client is redirected to a URL handled only by
the extension.

If this is not necessary for your application, a performance
improvement can be gained by disabling
authenticate-by-redirect. This applies particularly to
applications where the initial (or all) requests are POST
requests with a significant amount of data in the request
body.

When redirects are used in this authentication process, the
POST body data must be cached, which involves transfer
of the data to and from the authorization server. Disabling
redirects removes the need to cache this data, since user
agents will typically not submit the POST data until any
HTTP 401 authentication exchanges have completed.

This parameter may be qualified by the IIS Web site name.
For example, the following specifies that for all Web sites
except "Web Site 2" redirects will not be used:

[iis]
authenticate-by-redirect = no
[iis:Web Site 2]
authenticate-by-redirect = yes

Changes to this parameter require restarting IIS before
taking effect.

IIS must be configured to provide an authentication
mechanism when this parameter is disabled (that is,
authenticate-by-redirect = no). For example, if the Web
Plug-in is configured for cert authentication, then
Directory Security for the IIS Web Site must also be
configured for certificate authentication.

18 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 3. Web-server-specific configuration parameters (continued)

Parameter Description

fallback-to-server-port When following redirects to non-standard ports, some
browsers do not include the non-standard port in the Host
header of the redirected request.

This causes any subsequent redirects to target the standard
port (80 for HTTP, 443 for HTTPS) rather than the
non-standard port. This may cause these requests to fail.

Normally, the information in the Host header should be
used to target redirects back to this server. Setting this
configuration parameter to true overrides this and, if the
Host header does not include port information, will
fallback to the server's listening port as the default (rather
than standard port for the protocol).

Changes to this parameter will not take affect until the
Web server has been restarted.

This is a global parameter and may not be set on a
per-virtual host basis nor on a per-branch basis.

[iplanet]

query-contents Specifies the query contents program for browsing the Sun
Java System Web Server Web space by pdadmin. This
parameter can be overridden on a per branch basis by
specifying a value for it in a stanza named
[iplanet:branch], for example, [iplanet:/PDWebPI/
lotus.com]

query-log-file Location of log file for errors encountered by the query
contents program.

doc-root Specifies the documentation root that provides the Web
space browse capability needed for performing 'pdadmin>
object list' commands. This parameter is set by the
configuration utility when setting up virtual hosts - it is
specified on a per-policy branch basis in an
[iplanet:branch] stanza, for example, [iplanet:/PDWebPI/
lotus.com]

In the example below, the virtual hosts ibm.com and lotus.com both have a
corresponding stanza in the configuration file: [iplanet:/PDWebPI/ibm.com] and
[iplanet:/PDWebPI/lotus.com] where specific configuration parameters are
defined.
[pdweb-plugins]
virtual-host = ibm.com
virtual-host = lotus.com
web-server = iplanet

[iplanet]
query-contents = /opt/pdweb/bin/wpi_iplanet_ls

[iplanet:/PDWebPI/ibm.com]
doc-root = /usr/local/ibm.com/doc/root

[iplanet:/PDWebPI/lotus.com]
doc-root = /usr/local/lotus.com/doc/root

Chapter 2. Configuration 19

Web server considerations

IIS

When configuring IIS security settings using the Directory Security tab in the Web
server Properties dialog, it is important to remember that some of the configurable
security settings are inheritable through the Web space hierarchy.

The plug-in dynamically creates "virtual" Web space objects to handle various
functions. The security settings on these objects are often important. It is essential
that the security properties on these objects are not changed.

After IIS security settings have been modified within the Directory Security tab of
the Properties dialog, the Inheritance Overrides dialog is displayed. The Inheritance
Overrides dialog lists Child Nodes that override the value you have just set. You
have the option to choose which nodes should use the new value. PDWebPI nodes
must not be selected in this dialog.

Apache and IHS

At configuration time, the Web Plug-in sets configuration directives
(PDWebPIVHostld) in the Apache httpd.conf file. These control the value that the
virtual host uses to identify itself to the Web Plug-in. The default values set up by
the Web Plug-in can be changed if they do not meet your requirements.

Disabling Multiviews:

When using Apache or IHS Web servers the MultiViews directive on the root
directory should be disabled. Having the MultiViews directive enabled bypasses
the authentication checking by Security Access Manager Plug-in for Web Servers
thereby compromising Web server security.

The Multiviews directive is enabled on the document root directory by default in
Apache.

Configuration for PHP scripts:

Security Access Manager Plug-in for Web Servers only works correctly when PHP
scripts are handled internally to the Web server, using PHP support configured as
a module implementation.

Listing objects defined with Apache AliasMatch:

For Web spaces protected by the plug-in, objects in the Apache http.conf file
that use the AliasMatch directive will not appear in the output of a pdadmin
object list command.

Customizing object listings
Security Access Manager Plug-in for Web Servers supplies a binary file for each
supported Web server used to determine the output for a pdadmin administration
object list or an object show command.

The following table indicates the standard binary names, and their locations:
v IHS — install_path/bin/wpi_ihs_ls

v IIS — install_path/bin/wpi_iis_ls.exe

20 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Note: These programs are executed by the Web Plug-in (not directly run by users)
whenever a pdadmin object list or object show command is requested.
If you require object browsing capabilities that are not part of the standard
functionality, you will need to develop your own customized binary to replace that
supplied with the plug-in.

When developing a customized binary the following guidelines apply:

Command Line Arguments

IHS,Apache

directory virtual_host log_file [-d]

Where:

directory The absolute path to the directory or file to list or show.

virtual_host The virtual host for the directory or file.

log_file The absolute path to a file which will contain any error information
produced by the action.

-d When the -d option is specified an object show is executed instead
of an object list.

IIS

[-log log_file] -path directory -vhost virtual_host [-d]

Where:

log_file The absolute path to a file which will contain any error information
produced by the action.

directory The absolute path to the directory or file to list or show.

virtual_host The virtual host for the directory or file.

-d When the -d option is specified an object show is executed instead
of an object list.

Output

For each entry listed the format of the output will be:
<Object Type=[type] Description=[description] Attachable=[yes/no]> [name] </Object>

Where:

Chapter 2. Configuration 21

type A number which indicates the object type. Values include:

v 0 Unknown

v 1 Domain

v 2 File

v 3 Program

v 4 Directory

v 5 Junction

v 9 HTTP Server

v 10 Non-existent object

v 11 Container

v 12 Leaf

v 14 Application Container

v 15 Application Leaf

description A textual description of the object.

attachable Whether policy can be attached to the object.

name The object name for the object. This object name should not contain any
leading directory names.

For example:
<Object Type=2 Description="File" Attachable="yes"> apache.gif </Object>

Customizing message and error pages

The plug-in provides a number of default message pages that are returned when
particular conditions occur. The content of these message pages can be changed to
better suit your needs. You can also create your own error message pages, based
on error codes returned by the plug-in.

Message pages are configured in the [error-pages] stanza of the pdwebpi.conf
configuration file using the following format:
error code = error page returned

The default configuration is listed in the following table.

Table 4. Default message pages returned for error codes

Error Code Displayed page Description

0x35f02188 acct_locked.html Displayed when the user account is locked.

0x35f0205d login_success.html Displayed when a user has successfully
logged in, but no referring URL has been
located.

0x35f021be retry_limit_reached.html Displayed when a user has exceeded the
allowable login attempts and their account
is temporarily disabled.

0x35f02421 session_limit_reached.html Displayed when a user has reached the
concurrent session limit.

default azn_srv_error.html Displayed when an error condition has been
detected that does not match any other
configured error response.

22 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Modifying existing error pages

By default, the HTML error pages are located in the following directory:
install_path/nls/html/lang/charset.

Where:
v lang is taken from the NLS configuration. In a U.S. English installation, lang will

be set to C.
v charset is the character set in which the page is encoded. The default is utf-8.

For details on plug-in language support refer to “Language support and character
sets” on page 45.

Because error 0x35f021be (retry_limit_reached.html) is a message returned before
user authentication has occurred, any new URL of the message page needs to be
either outside the Web server object space protected by the plug-in or have policy
attached that permits unauthenticated access. If the error is configured as a macro
file, this limitation does not apply.

When customizing the default message pages:
v Do not modify the hexadecimal error number. This is used by the plug-in to

identify the error condition.
v The messages are displayed as HTML pages and so valid HTML tagging is

required.
v Macros can be used to display dynamic information. Refer to “Macro support”

on page 9 for a list of available macros.

Creating new error pages
You can create new error message pages for errors returned by the plug-in.

About this task

All plug-in errors are documented in the IBM Security Access Manager for Web: Error
Message Reference.

Procedure
1. Locate the error in the IBM Security Access Manager for Web: Error Message

Reference making note of the error's hexadecimal code.
2. Create a new entry in the [error-pages] stanza of the pdwebpi.conf

configuration file. The entry must specify the correct hexadecimal error code
and assign it the HTML page you have created for display when the error is
encountered. For example, to display a customized error page named
example.html for an error which has an error code of 0x35f02040:
[error-pages]
0x35f02040 = example.html

When only the filename of the message is given in the configuration, the
plug-in attempts to locate the HTML message file on the directory,
install_path/nls/html/langcharset.
Error pages can be stored elsewhere if you specify in the configuration entry
the absolute or server relative URL to the message file. For example:
[error-pages]
0x35f02040 = http://www.organization.com/TAM/errors/

HTTP_method_unrecognized.html

Chapter 2. Configuration 23

For errors that occur before the client is authenticated, you will need to be sure
the configured HTML message page is not part of the Web server object space
protected by the plug-in or ensure the message file location has attached policy
that permits unauthenticated access.

3. You can use macros to display dynamic information within the message. Refer
to “Macro support” on page 9 for a list of available macros.

Configuring switch user (SU) for administrators

The Plug-in for Web Servers switch user functionality allows specific
administrators to assume the identity of a user who is a member of the Security
Access Manager secure domain. The switch user implementation is similar to the
su command in UNIX environments. In the plug-in environment, the administrator
acquires the true credentials of the user and interacts with resources and back-end
applications with the exact same abilities as the actual user.

Switch user is a useful help desk tool for troubleshooting and diagnosing
problems. Switch user can also be used to test access of a user to resources and
perform application integration testing.

The following items highlight the important features of switch user:
v Switch user does not require the password of the user.
v The administrator uses a credential representing the actual user.
v Switch user is restricted to members of a special administrator's group. An

administrator cannot switch user to any other member of this group.
v Security Access Manager processes sec_master, and other selected users can be

excluded from the switch user capabilities through membership in an exclusion
group.

v A special HTML form is used to supply switch user information and activate a
special authentication mechanism that returns the specified credential of a user
without the requirement of a password.

v The administrator uses the pkmslogout utility to end a switch user session.

Note: When using Internet Explorer, cookie prompting must be switched off (the
default browser setting). Otherwise, the cookie cache within the browser may
become corrupted, causing the logout process to hang. To disable cookie
prompting from within Internet Explorer, select Internet Options from the Tools
menu, then click on the Advanced button under the Privacy tab and ensure the
check box is not selected.

Understanding the switch user process flow

The following sequence describes the switch user process flow:
1. The process begins with an authenticated administrator who is a member of the

su-admins group.
2. The administrator connects to a pre-configured switch user HTML form. This

form is accessible only to members of the su-admins group. If the user is not a
member of the su-admins group, a "Not Found" page is returned.

3. The switch user form is completed and returned with the following
information: user name (administrator is "switched to" this user), a destination
URL, and an authentication method. This action results in a POST request
being sent to /pkmssu.form.

24 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

4. Two checks are done before the switch is authorized.
a. The plug-in checks if the "switched to" user is a member of the su-admins

group. A user cannot "become" another user who is a member of the
su-admins group.

b. The plug-in checks if the "switched to" user is a member of the su-excluded
group. No users are allowed to "become" a member of the su-excluded
group. An error is returned if either of these two checks fail. All subsequent
requests are made as though they were made by the "switched to" user.

5. The administrator remains as the "switched to" user until the standard Security
Access Manager /pkmslogout utility is called at which time the "switched to"
user is logged out and the administrator returns to their original session.

Enabling switch user

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable switch user functionality, the
switch-user module needs to be configured as a pre-authorization module. This
allows the switch user function to access a user before authorization is performed.
[common-modules]
...
pre-authzn = switch-user
...

Ensure that the entry for switch user exists in the [modules] stanza of the
pdwebpi.conf configuration file. For example:
[modules]
...
switch-user = pdwpi-su-module
...

Configuring the switch user HTML form

The switch user form is defined in the [switch-user] stanza of the pdwebpi.conf
configuration file.
v The switch-user-form parameter specifies the name of the file. By default the file

name is switchuser.html and is located in the directory install_path/nls/html/
lang/charset. On US English systems, the lang directory is called C and charset
is utf-8.
[switch-user]
switch-user-form = switchuser.html

v The switch-user-uri parameter contains the URI which is used to invoke the
switch user function. Note that the standard authorization policy is not applied
to this URI. Group-based authorization checking is conducted instead of ACL
checking.
[switch-user]
switch-user-uri = /switchuser.html

v The switch-user-post-uri parameter specifies the URI which the switch user
form is submitted to:
[switch-user]
switch-user-post-uri = /pkmssu.form

The switch user form can be edited for customized appearance and functionality.
The form contains requests for:
v User name (the administrator "switches to" this user)

Chapter 2. Configuration 25

This user cannot be a member of su-excluded, securitygroup and su-admins.
v Destination URL

This page is displayed after a successful switch user operation. You can
configure this as hidden input containing an appropriate home page or a
successful switch user confirmation page.

v Authentication method

The authentication method determines the type of information used to build the
user credential. You can configure this field as hidden input. Refer to the notes
below for a list of the valid authentication method parameters.

v The macro, %CUSTOM%, is included in the default form and can be used to
automatically include in the form all configured switch-user authentication
mechanisms.

Switch user form notes:
v The form is only available to members of the su-admins group. An ACL is not

required on this file. The plug-in performs an internally hard-coded group
membership check. The plug-in returns a 404 "Not Found" error when the group
membership check fails.

v User name, destination URL, and authentication method are all required data.
v The required data can be built into the form as hidden fields.
v The plug-in verifies that all required data is present in the submitted form. If

data is missing, the form is returned to the administrator with a descriptive
message.

v Valid values for the authentication method include:
su-password
su-token-card
su-certificate
su-http-request
su-cdsso

These authentication method parameters specify which authentication
mechanism the plug-in is to use.

v Switch user form data is submitted to the /pkmssu.form action URL.

Enabling and excluding users from switch user

Only administrators who are members of the su-admins group can use the switch
user function and receive the switch user HTML form. Switch user functionality is
enabled for any user who is a member of the su-admins group.

Administrators can switch user to any Security Access Manager account, except
those belonging to certain groups. You can exclude other Security Access Manager
users from switch user through membership in the su-excluded group. In addition,
members of the Security Access Manager securitygroup group are excluded from
switch user functionality. Typically, sec_master and the Security Access Manager
processes are members of securitygroup.

During switch user, the plug-in performs checks on all three groups. You cannot
"switch to" someone who is a member of the su-admins, su-excluded,or
securitygroup groups.

26 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring the switch user authentication mechanism
The switch user authentication mechanism, which is a built-in shared library,
creates a credential which represents the switched-to user, which is based on the
supplied user name and authentication method, without requiring a password as
input.

Specify switch user authentication mechanisms in the
[authentication-mechanisms] stanza of the pdwebpi.conf configuration file. The
following authentication mechanisms are supported:
[authentication-mechanisms]
#su-password = su-password-library
#su-token-card = su-token-card-library
#su-certificate = su-certificate-library
#su-http-request = su-http-request-library
#su-cdsso = su-cdsso-library

Security Access Manager supplies a single switch user library that can be used to
enable any of the authentication mechanisms in a default, non-customized
environment. The switch user library differs from the standard authentication
libraries. The library specifies an authentication mechanism that takes the user
identity which is supplied in the switch user form. Then, it returns a valid
credential for that user without requiring the user password for input.

The built-in switch user shared library that is provided with Security Access
Manager is called:

UNIX libsuauthn

Windows
suauthn

The switch user feature also supports custom external authentication mechanisms.
This support is important because a custom mechanism often supplies more
information to the user credential.

Write a custom switch user mechanism that emulates the behavior of your existing
mechanism and supports the requirement of returning a credential without
requiring the user password for input.

Each configured switch user authentication library must be uniquely named, even
when the default library, libldapauthn, is used for more than one authentication
method.

In the following example for a Solaris platform, an existing environment has three
authentication methods enabled:
1. Forms authentication by using the built-in libldapauthn library,
2. Certificates authentication by using the built-in libsslauthn library,
3. Token authentication by using a custom authentication mechanism that is

developed against the external authorization C API.

The environment is now expanded to support switch user feature for any of those
three authentication methods. Three more authentication parameters for switch
user must be enabled in the pdwebpi.conf configuration file. In addition, a new
custom library must be written to emulate the existing token authentication
mechanism and support the requirements of switch user authentication:

Chapter 2. Configuration 27

[authentication-mechanisms]
passwd-ldap =/opt/PolicyDirector/lib/libldapauthn.so
cert-ssl =/opt/pdwebrte/lib/libsslauthn.so
token-cdas =/opt/developer_libraries/lib/libcustom.so
su-password =/opt/pdwebrte/lib/libsuauthn.so
su-certificate =/opt/developer_libraries/lib/libsucert.so
su-token-card =/opt/developer_libraries/lib/libsucustom.so

where developer_libraries is the directory which contains the custom libraries
that are created by the developer.

Impacting other plug-in functionality

Impact on session cache timeout configuration

The functionality of the configured plug-in session cache inactivity and lifetime
timeout values are not affected by the switch user operation. The inactivity and
lifetime timers are associated with the administrator's session cache entry and not
the session data that changes during a switch user operation.

The session inactivity timer continues to be reset while the administrator performs
requests as the "switched-to" user. When the administrator ends the switch user
session, the inactivity is still valid for the re-established administrator session.

The session lifetime value is not extended by a switch user operation. It is possible
for the lifetime timeout of the administrator session to expire during a switch user
operation. If this timeout occurs, the sessions are deleted, logging off both the
administrator and the 'switched-to' user. The administrator must reauthenticate and
begin the switch user operation again.

Incorporating Step-up authentication levels

The shared library specification can take additional arguments in the form:
library&arg1 arg2 ... argx

You can designate step-up authentication levels using the –l option followed by the
level number. For example:
su-password =/opt/pdwebrte/lib/libsuauthn.so&-l 1
su-certificate =/opt/developer_libraries/lib/libsucert.so&-l 0
su-token-card =/opt/developer_libraries/lib/libsucustom.so&-l 2

where developer_libraries is the directory containing the custom libraries created by
the developer.

Note: For this version of Security Access Manager, the administrator must know
the password of the user to successfully perform step-up authentication.

Support for reauthentication

The plug-in reauthentication functionality is recognized by the switch user
operation. If reauthentication is required during a switch user operation, the
administrator must authenticate as the "switched-to" user.

Note: For this version of Security Access Manager, the administrator must know
the "switched-to" user's password to successfully reauthenticate.

28 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Support for user session management

The switch user operation supports user session management. The administrator
has a unique User Session ID. Additionally, during a switch user operation, a
unique User Session ID exists for the "switched-to" user. The terminate single user
session task and the terminate all user sessions tasks operate as in the following:
v The "switched-to" user session is terminated when the "switched-to" session ID

or user session ID is specified.
v Both the administrator session and the "switched to" user session are terminated

when the administrator session ID or the User Session ID are specified.

Support for tag-value

The tag-value capability is recognized and supported by the switch user
functionality.

Auditing the administrator during switch user

It is possible to audit the administrator during a switch user operation. The switch
user functionality adds an extended attribute to the "switch-to" user credential that
identifies the administrator. The extended attribute, as stored in the credential, is
called tag_value_prefix_su-admin:
tag_value_prefix_su-admin = su-admin-name

Where tag_value_prefix_ represents the tag_value_prefix parameter value
configured in the [pdwebpi-plugins] stanza of the plug-in configuration file. This
extended attribute is available to any auditing mechanism.

Configuring failover for LDAP servers

Security Access Manager plug-in for web servers connects to any available LDAP
server (master or replica, depending on priority) when it starts. If the LDAP master
server is down for any reason, the plug-in needs to connect to an available LDAP
replica server for any read operations. This configuration is the standard Security
Access Manager LDAP replica configuration. For further details, see the IBM
Security Access Manager for Web: Base Administration Guide.

IBM Directory (LDAP) supports the existence of one or more read-only replica
LDAP servers. Sun Java System (formerly Sun ONE) Directory Server (LDAP)
supports the existence of one or more read-only replica LDAP servers known as
"consumers". You must add lines to the [ldap] stanza of the pdwebpi.conf
configuration file to identify any replica servers available to the plug-in.

Security Access Manager supports a maximum of one host and nine LDAP replica
servers listed in the ldap.conf file. If more than nine LDAP replica entries are
listed, the Security Access Manager servers cannot start. Do not specify more than
nine replica LDAP servers.

Use the following syntax for each replica:
replica =ldap_server,port,type,preference

where:

ldap_server
The network name of the LDAP replica server.

Chapter 2. Configuration 29

port The port this server listens on. Generally, use 389 for unencrypted
communications or 636 for communicating over SSL.

type The type of the replica server - either read-only or read-write. Normally,
use read-only. A read-write type represents a master server.

preference
A number from 1 to 10 (10 is the highest preference). The server with the
highest preference value is chosen for LDAP connections. See "Setting
preference values for replica LDAP servers" in the IBM Security Access
Manager for Web: Base Administration Guide.

Example:
replica =replica1.ldap.ibm.com,389,readonly,5
replica =replica2.ldap.ibm.com,389,readonly,5

Supporting Platform for Privacy Preferences (P3P) headers

The Platform for Privacy Preferences Project (P3P), is a World Wide Web
Consortium standard that provides a way to describe user privacy preferences and
Web server privacy policy information in a uniform way. Using P3P, a user can
configure privacy preferences that determine what information is divulged to a
Web server and how that information is used.

With P3P, a Web server can specify what user privacy policy information it gathers
and what it will use this information for. The privacy policy of a Web server is
made available in a machine-readable format to clients that P3P enabled browsers
can "read" and compare with the privacy preferences of the user. The user is
alerted when the privacy policy of the Web server and the privacy configuration of
the user do not match.

A common use for P3P is to enable browsers to make intelligent decisions about
whether to accept cookies received from a Web server. Support for this is enabled
by default within Internet Explorer 6.0. If Internet Explorer 6.0 receives a cookie
from a site that doesn't send a P3P policy, or sends a policy that does not match
the privacy preferences of the user, then the browser may decide to automatically
block the cookie.

The plug-in relies on cookies to maintain session information as well as, for
instance, to retain failover information. Internet Explorer, using its default settings
blocks cookies and so will not store plug-in cookies, effectively limiting plug-in
functionality. The plug-in provides P3P configuration options that specify a
compact P3P policy statement sent with pages when a plug-in cookie is set.

The plug-in P3P configuration options allow you to create a compact P3P policy
that matches the privacy policy of your organization. It is then up to the client to
decide if they will allow Security Access Manager cookies to be set.

Note: You should not configure a P3P policy that does not match the privacy
policy of your organization just to allow Internet Explorer to accept cookies. Before
enabling P3P policies for plug-in cookies, ensure you are familiar with the P3P
specification and understand exactly what it is you are claiming as the privacy
policy of your organization.

30 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring P3P headers
The plug-in provides configuration parameters that match the definition of the
compact policy syntax of the W3C P3P requirements. These must be configured to
allow plug-in cookies while still maintaining the integrity of your organization's
privacy policy.

The first step in configuring P3P headers is to set the send-p3p-header parameter
in the [pdweb-plugins] stanza in the pdwebpi.conf configuration file. This entry
can be set on a per virtual host basis by defining it within a user defined
[virtual_host_name] stanza. Set to true the send-p3p-header parameter specifies
whether the plug-in adds a P3P header containing a compact policy statement to
any HTTP response in which it has set cookies. The sending of a P3P policy is
disabled by default.

If you have enabled the sending of P3P headers, the parameters in the
[p3p-header] or [p3p-header:virtual_host] stanza must then be set. These
parameters define the compact policy that applies to all HTTP cookies set.

The default settings in this stanza allow session cookies to be stored in an Internet
Explorer 6 browser — even if they appear as third-party cookies.

Table 5. [p3p-header] parameters

Parameter Use

p3p-element This parameter can be used to specify a reference to a full XML
policy in addition to the compact policy configured using the other
parameters in this stanza.

Uncommenting the line,
p3p-element = policyref="/w3c/p3p.xml", directs the browser to

send the specified reference to the full XML policy.
Note: An ACL that allows unauthenticated access needs to be set
on the /w3c directory to allow access to the policy. This is required
as Internet Explorer does not send authentication information with
the request that permits the viewing of policy.

access Specifies the access the user has to the information contained
within and linked to by the cookie. Possible values:
none
all
nonident
contact-and-other
ident-contact
other-ident

disputes Specifies whether the full P3P policy contains some information
regarding disputes over the information contained within the
cookie. Valid values are true or false. This parameter is set to false by
default.

remedies Specifies the possible remedies for disputes. Possible values are:
correct
money
law

If not specified, no remedy information is included in the policy.

non-identifiable When set to true, this parameter specifies that no information in the
cookie, or information linked to by the cookie, personally identifies
the user in any way. Valid values are true or false. This parameter is
set to false by default.

Chapter 2. Configuration 31

Table 5. [p3p-header] parameters (continued)

Parameter Use

purpose Specifies the purpose of the information in the cookie and linked to
by the cookie. Possible values are:
current
admin
develop
tailoring
pseudo-analysis
pseudo-decision
individual-analysis
individual-decision
contact
historical
telemarketing
and other-purpose.

For all values except current, an additional specifier may be
configured. The possible values are:
always
opt-in
opt-out.

For purposes not specified, the default value is always. This value is
specified after the purpose, separated by a colon, for example:

purpose = contact:opt-in

recipient Specifies the recipients of the information in the cookie, and the
information linked to by the cookie. Possible values are:
ours
delivery
same
unrelated
public
other-recipient.

retention Specifies how long the information in the cookie or the information
linked to by the cookie is to be retained.

Possible values are:
no-retention
stated-purpose
legal-requirement
business-practices
indefinitely.

32 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 5. [p3p-header] parameters (continued)

Parameter Use

categories Specifies the type of information stored in the cookie or linked to
by the cookie.

If the non-identifiable parameter is set to true, then no categories
need be configured. Possible values are:
physical
online
uniqueid
purchase
financial
computer
navigation
interactive
demographic
content
state
political
health
preference
location
government
other-category

Example P3P configuration:
[pdweb-plugins] or [virtual_host_name]
send-p3p-header = true
...
[p3p-header] or [p3p-header:virtual_host_name]
p3p-element = policyref="/w3c/p3p.xml"
access = none
disputes = false
non-identifiable = false
purpose = current
purpose = other-purpose:opt-in
recipient = ours
retention = no-retention
categories = uniqueid

Cross-site scripting protection
Cross-site scripting is a server-side vulnerability that is introduced by rendering
client user input as HTML. Cross-site scripting attacks can expose sensitive
information about the users of a website. To help mitigate the risk of cross-site
scripting, a new feature was introduced in Microsoft Internet Explorer 6. This
feature adds an attribute to cookies that prevents them from being accessed
through client-side script. A cookie with this property set is called a HttpOnly
cookie.

The optional HttpOnly flag reduces the risk of internal cookie information exposed
to client-side script. When enabled, this attribute is generally applied to internal
security cookies which includes the session, dsess, and failover cookies.

The HttpOnly flag can be added to Security Access Manager Plug-in for Web
Servers internal cookies by setting a configuration file entry. If set, the HttpOnly
flag is only recognized by Internet Explorer version 6 and above. Other Web
browsers do not recognize this flag.

Chapter 2. Configuration 33

Setting the HttpOnly property does not prevent an attacker with access to the
network channel from observing the cookie. You must use the Secure Sockets Layer
(SSL) to prevent the cookie from being read in clear text through packet sniffing.

Configuring plug-in auditing, logging, and tracing

Logging and auditing can provide information to help you identify any problems
you might have with the plug-in. If you find you are having trouble and need a
real-time view of error messages, then start the plug-in in the foreground using the
-foreground option:
pdwebpi -foreground

Note: For installations on IIS, restart IIS before starting the plug-in in foreground
mode to release any existing shared memory.

Status and error messages are logged in the file configured in the log-file, logs and
log-entries parameters in the [pdweb-plugins] stanza of the pdwebpi.conf
configuration file.

Plug-in auditing configuration is performed using the parameters in the
[aznapi-configuration] stanza of the pdwebpi.conf configuration file.

For more information on auditing, logging and tracing or Security Access Manager
data, refer to the IBM Security Access Manager for Web: Auditing Guide.

Using the Common Auditing and Reporting Service

The Common Auditing and Reporting Service is a tool for security products, to
collect audit events and allow for user specific reporting on the collected audit
events. The product is separate to Security Access Manager and therefore not a
prerequisite, requiring a separate installation on the participating plug-in. Use of
the Common Auditing and Reporting Service for the plug-in is enabled by default
if IBM Security Access Manager for Web uses the service.

There are no plug-in specific extensions to the Common Auditing and Reporting
Service interface.

Common Auditing and Reporting Service audit configuration is handled separately
to the auditing of data for previous versions of Security Access Manager and can
coexist with logging of such data.

For more information on the Common Auditing and Reporting Service, refer to the
IBM Security Access Manager for Web: Auditing Guide.

Audit records

The plug-in captures authentication, authorization, and general server status audit
events. The standard authentication audit events do not allow the correlation of
these events to a specific virtual host. For this reason, the plug-in implements its
own audit event category to capture virtual-host specific authentication
information.

Standard authorization audit events do capture plug-in relevant virtual host
information by virtue of the protected object name being constructed with the

34 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

/PDWebPI/virtual_host_name prefix. However the plug-in may apply several
different authorization rules and other logic before reaching a definitive
authorization decision.

For this reason, the plug-in implements its own audit event category that captures
the final authorization result. These application level authorization events are
reported by the plug-in to the Common Auditing and Reporting Service as HTTP
Resource Access Events, although the plug-in has no way of determining what the
final access result, returned by the hosting web server after the plug-in completes
its intervention, will be.

Other events have also been developed that trace user session terminations
through various logout activities.

Plug-in-specific authentication audit events are recorded in virtual-host-specific
audit event pools constructed as follows:
wpi.virtual_host_name.authn.authentication_module_name.successful

and
wpi.virtual_host_name.authn.authentication_module_name.unsuccessful

Plug-in-specific authentication audit events conform to the DTD definition
described in the IBM Security Access Manager for Web: Base Administration Guide.

Elements of the XML style 'wpi' audit records are described in this table.

Table 6. Authentication audit record field definitions.

XML Tag Description

<event> Encapsulates tag for the audit record. The element includes an attribute
describing the doc type definition revision of the record.

<date> Record of the date and time the event occurred.

<outcome> The tag element includes a status parameter that identifies the Security
Access Manager or plug-in error code. The element describes the broad
outcome of the event. The possible values are:

v 0 = Success

v 1 = Failure

v 2 = Pending

v 3 = Unknown

Events with an outcome of success are written to the successful pool, all
others are written to the unsuccessful pool.

<originator> Header tag for the originator section of the audit record. The tag
element includes the blade parameter that identifies the Security Access
Manager blade responsible for the event.

<event_id> 105

<component> The tag identifies the component that captured the audit record. The
component is recorded in the form:
wpi.virtual_host_name.type_of_event.module_name .successful or
unsuccessful

Chapter 2. Configuration 35

Table 6. Authentication audit record field definitions. (continued)

XML Tag Description

<action> Identifies the authentication method attempted. Action codes and their
corresponding authentication mechanisms are:

16961 - BA
17236 - Client side certificate
17731 - Ecsso
17999 - Failover cookie
17997 - Forms
18504 - Http Header
18768 - IP address
4806211 - IV header: PAC credential
4806229 - IV header:user name
4806220 - IV header:Distinguished name
300609 - IV header:IP address
21579 - Token

<location> Defines the server name that initiated the event.

<accessor> Header tag for the accessor section of the audit record. Tag element can
include the name of the accessor.

<principal> The principal tag includes the parameter auth that identifies the
authenticating directory service. The tag defines the validated user
name.

<target> The target tag includes the parameter resource that can be one of the
following values:

v 0 = authorization

v 1 = process

v 2 = TCB

v 3 = credential

v 4 = general

Authentication audit records always set this value to 3 - credential.

<object> Holds audit data that has little meaning for the authentication process.

<authntype> Common Auditing and Reporting Service compatible authentication
method name.

<authnprovider> Configured name of the authentication module.

<data> Extra authentication failure information. For example, failure during an
authentication attempt using HTTP header information will result in an
audit log record recording the failed HTTP header in this field.

Plug-in-specific authorization audit events are recorded in virtual-host-specific
audit event pools constructed as follows:
wpi.virtual_host_name.access.successfulor
wpi.virtual_host_name.access.unsuccessful.

Plug-in-specific authorization audit events conform to the DTD definition
described in the IBM Security Access Manager for Web: Base Administration Guide.

Elements of the XML style 'wpi' access audit records are described in the table
below.

Table 7. Authorization audit record field definitions.

XML Tag Description

<event> Encapsulates tag for the audit record. The element includes an
attribute describing the doc type definition revision of the record.

36 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 7. Authorization audit record field definitions. (continued)

XML Tag Description

<date> Record of the date and time the event occurred.

<outcome> The tag element includes a status parameter that identifies the
Security Access Manager or plug-in error code. The element describes
the broad outcome of the event. The possible values are:

v 0 = Success

v 1 = Failure

v 2 = Pending

v 3 = Unknown

Events with an outcome of success are written to the successful pool,
all others are written to the unsuccessful pool.

<originator> Header tag for the originator section of the audit record. The tag
element includes the blade parameter that identifies the Security
Access Manager blade responsible for the event.

<event_id> 109

<component> The tag identifies the component that captured the audit record. The
component is recorded in the form:
wpi.virtual_host_name.access.successful or unsuccessful

<action> 2

<location> Defines the server name that initiated the event.

<accessor> Header tag for the accessor section of the audit record. Tag element
can include the name of the accessor.

<principal> The principal tag includes the parameter auth that identifies the
authenticating directory service. The tag defines the validated user
name.

<target> Generally audit access records always set this this value to 3 -
credential.

<resource_access> The URL requested and an <httpresponse> value. For the web plug-in
the http response will not be set to the final response as that can only
be obtained from the hosting web server after the plug-in passes on
the authorized requests for handling.

It is possible the client could request a non-existent page, which might
be permitted theoretical access by the authorization server but
ultimately results in a 404 Not Found from the web server.

<data> Not used.

Plug-in-specific session termination audit events are recorded in
virtual-host-specific audit event pools constructed as follows:
wpi.virtual_host_name.authn.authentication_module_name.successful

Plug-in-specific session termination audit events conform to the DTD definition
described in the IBM Security Access Manager for Web: Base Administration Guide.

Elements of the XML style 'wpi' audit records are described in the table below.

Table 8. 'wpi' audit record field definitions.

XML Tag Description

<event> Encapsulates tag for the audit record. The element includes an attribute
describing the doc type definition revision of the record.

Chapter 2. Configuration 37

Table 8. 'wpi' audit record field definitions. (continued)

XML Tag Description

<date> Record of the date and time the event occurred.

<outcome> 0 = Success

<originator> Header tag for the originator section of the audit record. The tag
element includes the blade parameter that identifies the Security Access
Manager blade responsible for the event.

<event_id> 103

<component> The tag identifies the component that captured the audit record. The
component is recorded in the form:
wpi.virtual_host_name.type_of_event.module_name.successful

<action> 103

<location> Defines the server name that initiated the event.

<accessor> Header tag for the accessor section of the audit record. Tag element can
include the name of the accessor.

<principal> The principal tag includes the parameter auth that identifies the
authenticating directory service. The tag defines the validated user
name.

<target> The target tag includes the parameter resource that can be one of the
following values:

v 0 = authorization

v 1 = process

v 2 = TCB

v 3 = credential

v 4 = general

Authentication audit records always set this value to 3 - credential.

<authntype> Common Auditing and Reporting Service compatible authentication
method name.

<terminateinfo> Container for a <terminatereason> descriptive string.

<data> Not used.

Auditing configuration

The following table displays the basic auditing configuration parameters and
explains their function. The basic auditing configuration does not afford much
flexibility in filtering the type of audit events to be captured. Greater control is
possible using logcfg configurations to capture audit events. logcfg configuration
is more fully described in the IBM Security Access Manager for Web: Base
Administration Guide.

Table 9. Basic auditing configuration parameter definitions

Parameter Description

logsize The size (in bytes) at which the log files rollover to a new file.
If set to 0 the log files will not rollover. A negative number
will roll the logs over daily regardless of size.

logflush The interval in seconds at which the logs are flushed.
Maximum of 6 hours and a default of 20 seconds.

logaudit Enables or disables auditing.

38 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 9. Basic auditing configuration parameter definitions (continued)

Parameter Description

auditlog Specifies the name of the audit file

auditcfg Enables or disables authorization and/or authentication
auditing.

For example:
[aznapi-configuration]
logsize = 2000000
logflush = 20
logaudit = no
auditlog = audit.log
auditcfg = azn
#auditcfg = authn
auditcfg = wpi

logcfg auditing configuration overrides any basic auditing configuration. The
following tables list the format of the logcfg command and the audit event
categories that may be extracted from the web plug-in.

Table 10. logcfg auditing configuration parameter definitions.

Parameter Description

logcfg Category (stdout|stderr|file|pipe|remote) parameters. Allows an
event logger to be attached to a category of events.

Table 11. Audit event pools. These are values which may be specified for the category part
of a logcfg configuration.

Category Description

audit.authn Authentication events logged by the
authorization api.

audit.azn Authorization events logged by the
authorization api.

audit.wpi.virtual_host._name.authn.authentication
_module_name.successful

Successful authentication events logged
by the {authentication_module_name}
authentication module for the
{virtual_host_name} virtual host.

audit.wpi.virtual_host._name.authn.authentication
_module_name.unsuccessful

Authentication attempts that failed,
logged by the
{authentication_module_name}
authentication module for the
{virtual_host_name} virtual host.

audit.wpi.virtual_host._name.access.successful Access decision events logged by the
{virtual_host_name} virtual host. The
success event category records events
where it was possible to make an
access decision irrespective of whether
that decision outcome was permitted
or denied.

Chapter 2. Configuration 39

Table 11. Audit event pools. These are values which may be specified for the category part
of a logcfg configuration. (continued)

Category Description

audit.wpi.virtual_host._name.access.unsuccessful Access decision events logged by the
{virtual_host_name} virtual host. The
unsuccessful event category records
events where it was not possible for
the plug-in to reach a definitive access
decision.

Event categories are inclusive of sub categories. Configuring the capture of the
audit.wpi.virtual_host_name category of events will capture all of the events for
which audit.wpi.virtual_host_name is the root portion of an events category.
Hence, capturing the all encompassing 'audit' category will record all audit events.

Tracing Plug-in actions

Security Access Manager Plug-in for Web Servers provides the ability to trace
actions and store the results on file for the purposes of debugging. Primarily,
tracing is an analysis and problem diagnosis tool used by application support to
gain a complete view of actions causing errors. As a user, you might find some of
the plug-in tracing facilities useful, although the majority will be of little benefit
unless you are diagnosing complex problems.

It is possible to trace the HTTP messages at the plug-in. This can be very useful
because it shows exactly what is received from the user and what is returned to
the user, even if the communication is over HTTPS. Trace is enabled and disabled
using the standard pdadmin tracing commands.

The inputs to and results of authorization decisions can be traced to facilitate
diagnosis of authorization policy configuration problems. This tracing shows user
credential information including names, UUIDs, session ID, and attributes. This
tracing also shows the name of the Security Access Manager protected object being
used to make the decision and the permissions required. The result of the decision
is also shown along with any returned decision attributes.

pdadmin trace commands

You can use pdadmin commands to specify tracing.

Listing trace components:

The list command produces a list of all the plug-in actions that can be traced.

Syntax:
pdadmin> server task PDWebPI-server-name trace list [component]

The majority of trace tasks listed are specific to Security Access Manager.
Plug-in-specific trace items are prefixed with pdwebpi.

Setting trace components:

There are four main trace items that you might find useful for debugging:
v pdwebpi.request

40 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

v pdwebpi.plugin
v pdwebpi.azn
v pdwebpi.session

When pdwebpi.request is set to two, tracing occurs on every request that passes
through the plug-in. When pdwebpi.request is set to nine, the request header is
included in the trace.

Note: The pdwebpi.request component traces the entire HTTP request that the
server receives, which might include sensitive information.

pdwebpi.plugin activates trace in the plug-in server. All messages are sent to the
log file on the web server or, in the case of IIS, to a log different from that used for
the authorization server.

pdwebpi.azn set to one, traces information about every authorization decision
including protected object name, permission string, user name, session ID, HTTP
method, HTTP URI and decision result. When pdwebpi.azn is set to two, tracing
occurs for additional credential attribute information and both input and output
decision attributes. When pdwebpi.azn is set to five, additional information is
included about step-up and reauthentication processing.

pdwebpi.session set to seven, enables tracing of information about a session of a
user.

Another useful trace item is pdwebpi.proxy-cmd. This trace item shows all
information or commands that are passed back from the authorization server to the
plug-in (for example, headers which are set).

The trace set command has the following syntax:
pdadmin> server task PDWebPI-server-name trace set component
level [file path=file|other-log-agent-config]

Where component is the name of the trace component as shown by the list
command. A trace is set for this component. level is the amount of detail gathered
for the trace. The range is 1 to 9, with 1 being the least detailed and 9 being the
most detailed.

The optional file path parameter specifies the location for trace output. Trace
output by default is sent to the standard configured plug-in log file (except when
using the component pdwebpi.plugin). For IIS installations, the name of the file to
which the plug-in component trace is sent to is always configured using the
log-file parameter under the [iis] stanza in the configuration file.

Output can be sent to the screen by the pdadmin daemon using the -foreground
option. That is:
pdwebpi -foreground

Showing trace components:

To show trace components use the show command in the following form:
pdadmin> server task PDWebPI-server-name trace show [component]

Chapter 2. Configuration 41

Cache database settings

Plug-in cache database configuration is performed using the parameters in the
[aznapi-configuration] stanza of the pdwebpi.conf configuration file.

You can configure the plug-in to regularly poll the master authorization database
for update information. The cache-refresh-interval parameter can be set to
"default", "disable", or a specific time interval in seconds. The "default" setting is
disable.
[aznapi-configuration]
cache-refresh-interval = 60

The db-file parameter defines the full path to the ACL cache database. By default
this parameter is not set.
[aznapi-configuration]
db-file = /var/pdwebpi/db/pdwebpi.db

The listen-flags parameter enables or disables the reception of policy cache update
notifications. A "disable" value disables the notification listener. This parameter is
set by the svrsslcfg utility.
[aznapi-configuration]
listen-flags = disable

Plug-in statistics

Security Access Manager Plug-in for Web servers provides the ability to monitor
and collect information about specific server activity. The gathered statistics
information can be displayed and redirected to log files if required.

You can enable statistics reporting dynamically using the pdadmin command,
pdadmin stats on, or statically with configuration parameters in the plug-in
configuration file.

Full details of both these approaches, including statistics components available to
the plug-in, are described in the Web plug-in section of the IBM Security Access
Manager for Web: Auditing Guide.

Configuring the authorization API service
The [aznapi-entitlement-services] stanza of the pdwebpi.conf configuration file
assigns service IDs to services.

Each stanza entry defines different types of aznAPI service. See the IBM Security
Access Manager for Web: Administration C API Developer's Reference for details.

Each entry is in the form:
service_id = path_to_dll [& params ...]

Service IDs are used by the aznAPI client to identify the services. You can specify
parameters to pass to the service when it is initialized by the aznAPI. Parameters
follow the & symbol in the entry.

42 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Credential refresh

The information gathered at the time of user authentication is cached in the
credential for the duration of the session. See “Credential acquisition” on page 6
for more details on plug-in user credentials.

Unless configured for credential refresh, changes made to the source of the user
credential information, such as adding or removing the user from a group, are not
reflected in the session of the user until a new user session is created.

Some reasons why credential refresh is useful:
v You are able to refresh a credential of a user without requiring them to logout

and re-login to an application. This improves the user experience.
v It provides an administrator with the ability to supply extra access to secure

Web objects for a user during their current session.
v It improves security by allowing an administrator to restrict access permissions

of a user during a current session if the administrator has reason to believe that
the user is not behaving appropriately.

When refreshing credentials you may find it necessary to preserve some
information about the user from the original credential. For example, a custom
attribute may record the login time of a user which would be of value to keep
unchanged when the credential is refreshed. The plug-in allows you to configure
attributes to keep when a refresh is performed. These are configured based on the
attribute name.

The [cred-refresh] or [cred-refresh:virtual-host] stanza specifies the attributes to
preserve from the original credential and which attributes to refresh into the new
credential when a credential refresh operation takes place.

The values are specified in the form preserve = attribute_pattern for attributes to
preserve from the original. Values to refresh are specified in the form refresh =
attribute_pattern. The standard plug-in pattern matching rules apply to the attribute
patterns, with the exception that character comparisons are case insensitive. See
Appendix F, “Special characters allowed in regular expressions,” on page 295 for
more information on the allowed matching rules.

The following rules apply to the attribute list:
v Rules that appear earlier in the stanza have precedence over those that appear

later.
v Rules that do not match any attributes are refreshed by default.
v Certain attributes are always preserved, regardless of how the [cred-refresh]

stanza is configured. The attributes are:
– AZN_CRED_AUTHNMECH_INFO
– AZN_CRED_BROWSER_INFO
– AZN_CRED_IP_ADDRESS
– AZN_CRED_PRINCIPAL_NAME
– AZN_CRED_QOP_INFO
– AZN_CRED_NETWORK_STR
– AZN_CRED_NETWORK_BIN
– AZN_CRED_IP_FAMILY

Chapter 2. Configuration 43

v Attributes marked by the aznAPI as read-only are always preserved, regardless
of the contents of the [cred-refresh] stanza.

v If an attribute is not present in the original credential, it will not be preserved,
regardless of the configuration of this stanza.

Note: A credential is only refreshed from the registry when the credential does not
exist in the credential cache.

Once credential refresh functionality is configured you can use the pdadmin
command line utility to refresh the credential of a particular user. The example
below shows the commands for adding a user to a new group and refreshing the
credential while the user is still logged on, effectively giving the user access
permissions of the new group.
pdadmin> group modify group_name add user_name
pdadmin> server task server_name refresh all_sessions user_name

Configuring credential refresh
The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods.

Configure the cred-refresh module as a pre-authorization module to enable the
credential refresh feature.
[common-modules]
...
pre-authzn = cred-refresh
...

Ensure that the entry for credential refresh exists in the [modules] stanza of the
pdwebpi.conf configuration file:
[modules]
...
cred-refresh = pdwpi-cred-refresh-module
...

Configuring HTTP request caching

The plug-in caches request data and uses this cached data to rebuild a request
during a HTTP redirect, if a re-authentication requirement interrupts the
completion of the request processing. This functionality benefits POST and PUT
requests, because these requests types can include a variety of information fields.

When an authentication requirement interrupts a request, the plug-in caches all
information necessary to rebuild the request during the HTTP redirect that follows
after re-authentication. Cached request data includes URL, METHOD, Message
Body, query strings, and all HTTP headers (including cookies). This data is
temporarily stored in the plug-in credentials/session cache.

Upon successful authentication (or re-authentication), the plug-in sends a HTTP
redirect to the browser. The browser follows the redirect to the original URL
contained in the redirect. The plug-in intercepts the redirect and rebuilds the
request using the cached data. The rebuilt request is delivered to the URL
destination.

44 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring server-side caching parameters

The max-cached-http-body parameter in the [pdweb-plugins] stanza of the plug-in
configuration file specifies the maximum amount of HTTP body data that is cached
for any given request. When the amount of body data exceeds the configured
maximum, all of the body data is discarded.

The worker-size parameter within the [proxy-if] stanza controls the amount of
memory allocated for any given request. The max-cached-http-body size, at a
minimum, should conform to the following algorithm:

max-cached-http-body * 4/3 * 2 + 3000 <= worker-size # #

This algorithm assumes that 3000 bytes is enough memory to hold the request less
any POST data, and the returned form, less the cached POST data. If the size of
the request plus the size of the returned form is likely to exceed 3000 bytes you
should either increase the worker-size entry or decrease the max-cached-http-body
value.

FIPS cryptographic compliance

The plug-in operations affecting Federal Information Process Standards (FIPS)
140-2 compliance are:
v Session ID generation
v Encryption and decryption of the failover cookie
v Encryption and decryption of eCSSO tokens
v Encryption and decryption of CDSSO tokens
v Encryption and decryption of LTPA cookies

FIPS 140-2 compliant cryptographic operations within the plug-in are determined
at RTE configuration time, using the default Security Access Manager setting
within the pd.conf file. FIPS 140-2 compliance is disabled by default.

The optional ssl-fips-enabled setting within the [dsess] stanza of the
configuration file determines whether or not Federal Information Process Standards
(FIPS) mode is enabled on the session management server. If a FIPS setting other
than that set for the policy server is required, this setting must be manually
updated by the administrator. For more details, see Appendix C, “Plug-in
configuration file reference,” on page 211.

Language support and character sets

Security Access Manager Plug-in for Web Servers can display Security Access
Manager generated HTML pages in the preferred language of the customer. The
language used for the display in HTML pages is taken from the standard
Accept-Language header found within the HTTP request. Language values are
represented by two characters. Location-specific values are expressed in a two part
format, indicating the language and the country where this version of the language
is used. Examples include:
v es (Spanish)
v de (German)
v en (English)

Chapter 2. Configuration 45

v it (Italian)
v en-US (English/United States)
v en-GR (English/United Kingdom)
v es-ES (Spanish/Spain)
v es-MX (Spanish/Mexico)
v pt-BR (Portuguese/Brazil)

If the plug-in finds no appropriate language code in the HTTP request, it retries
the language list without the qualifying dialect (e.g. es-MX is retried as es). If an
appropriate language is still not found, the server uses English.

Only the Security Access Manager generated pages, contained within
install_path/nls/html/lang/charset, are served in multiple languages. Examples
of these pages include all Security Access Manager authentication forms and the
Security Access Manager account management pages.

The languages specified within the Accept Language field in the HTTP header are
mapped directly to directories found within the install_path/nls/html directory.
A server can be modified to cater for language specifier variations by copying
language directories. To modify a server, the actual language directories that
should be copied are :
am base install directory/nls/msg/lang
am webpi install directory/nls/html/lang/charset
am webpi install directory/nls/msg/lang/charset

The following table lists the languages supported by the plug-in, with the
associated sub-directory name:

Table 12. Plug-in supported languages with supported directory.

Language System Directory

English (default) C

Czech cs

German de

Spanish es

French fr

Hungarian hu

Italian it

Japanese ja

Korean ko

Polish pl

Portuguese, Brazil pt_BR

Russian ru

Chinese, China zh_CN

Chinese, Taiwan zh_TW

Up to ten language specifications in the Accept Language field of the HTTP header
are recognized.

46 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Different character sets for a given language are located in a directory below that
for language support. The character set directory used is selected based on the
value of the accept-charset header received from the client. If no match is found
(or if the header is not set) then the utf-8 directory is used.

You can enable and disable the support for different languages and character sets
based on the accept-language and accept-charset headers. The default settings for
these parameters are configured in the [pdweb-plugins] stanza but can be
overridden on a virtual host basis by defining them in a stanza with the name of
the virtual host ID.
[pdweb-plugins] or [virtual-host]
...
use-accept-langauge-header = true
...
use-accept-charset-header = false

By default, the use of the accept-charset header is disabled.

The use-accept-language-header parameter enables or disables the use of the
accept-language HTTP header when attempting to locate the language for the
generated HTML response.

The use-accept-charset-header parameter enables or disables the use of the
accept-charset HTTP header when attempting to locate the charset in which to
decode elements of a HTTP request, or generate a HTML response. The default
value (if not found within this configuration file) is false.

The user-agent header can be used as an alternative to the accept-language and
accept-charset headers for selecting a language and character set. The user-agent
header contains device-specific information that can be used to provide language
and character information when the requirements of the device are known. The
user-agent header is only used when either or both accept-language and accept-charset
headers are not found, or if the use of those headers is disabled.

The default mapping from user-agent to language and character set is configured in
the [user-agent] stanza and can be overridden on a per virtual-host basis. The
stanza includes a list of patterns that are matched, in the order specified, to the
contents of the user-agent header. For a list of the available wildcard characters
refer to Appendix F, “Special characters allowed in regular expressions,” on page
295.

If a match is found then the directory for the corresponding language and charset
is used. In addition to specifying a language and character set for a given
user-agent pattern, it is also possible to specify a directory. In this case the directory
name specified is used rather than the one for the charset when sending Security
Access Manager pages. This directory must be located under the specified
language directory.

Chapter 2. Configuration 47

48 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 3. Authentication and request processing

Authentication is the method of identifying an individual that is attempting to log
on to a secure domain. Successful authentication results in a Security Access
Manager identity that represents the user. The plug-in uses this identity to acquire
credentials for the user which are then used to permit or deny access to protected
resources depending on access control permissions, policy conditions, and
authorization rules for the resource.

Security Access Manager Plug-in for Web Servers supports several authentication
methods by default and can be customized to use others.

This chapter discusses how the plug-in maintains session state, handles the
authentication process, and performs any post authorization processing required
on authorized sessions.

This chapter includes the following topics:
v “Configuring authentication”
v “Authentication configuration overview” on page 57
v “Configuring Basic Authentication” on page 61
v “Configuring authentication by using forms” on page 64
v “Configuring certificate authentication” on page 66
v “Configuring authentication using RSA SecurID tokens” on page 68
v “Configuring SPNEGO authentication” on page 72
v “Configuring NTLM authentication (IIS platforms only)” on page 79
v “Configuring Web server authentication (IIS platforms only)” on page 80
v “Configuring failover authentication” on page 81
v “Configuring IV header authentication” on page 94
v “Configuring HTTP header authentication” on page 97
v “Configuring IP address authentication” on page 98
v “Configuring LTPA Authentication” on page 99
v “Configuring the redirection of users after logon” on page 101
v “Using an external authentication service” on page 102
v “Adding extended attributes for credentials” on page 106
v “Adding registry extended attributes to the HTTP header (tag value)” on page

109
v “Supporting Multiplexing Proxy Agents (MPA)” on page 110
v “Extended CDAS User Mapping Rules” on page 114

Configuring authentication
All available authentication methods with their associated shared library names are
defined in the [modules] stanza of the pdwebpi.conf configuration file.

The [modules] stanza also lists the modules that are used for session identification
and post-authorization handling. These modules are described later. The shared
libraries must exist in the pdwebpi/lib directory. Shared library names are specified

© Copyright IBM Corp. 2000, 2012 49

without any operating-system-specific prefix (such as lib) and any
operating-system-specific suffix (such as dll). For example:
BA = pdwpi-ba-module

In the preceding example, the BA module library is given as pdwpi-ba-module.
v On Windows, the plug-in looks for a file that is called pdwpi-ba-module.dll.
v On Solaris, the plug-in looks for a file called libpdwpi-ba-module.so.
v On AIX, the plug-in looks for a file called libpdwpi-ba-module.a.

Note: An alternative to the default search path for library files can be defined in
the [module-mgr] stanza.

Each label that is defined in the [modules] stanza has a corresponding stanza of its
own, for example [BA], [cert], and [token]. Specific configuration information for
each authentication method is specified in these stanzas and applies to that
authentication method independent of which virtual-host it is called from. If
special configuration is required on a per virtual-host basis, then the default
configuration can be overridden by using a stanza that qualifies the module label
with a virtual-host label. For example:
[BA]
basic-auth-realm = "Access Manager"

[BA:ibm.com]
basic-auth-realm = "ibm.com"

In the example, users who access virtual host ibm.com by using Basic
Authentication is subject to the configuration entries specified in the stanza
[BA:ibm.com].

A standard configuration of modules permits only one instance of a module library
to be specified for an authentication method, for example:
[modules]
BA = pdwpi-ba-module

Some installations might require multiple instances of an authentication library to
be specified. The requirement might be done when different behavior of a module
is required for different authentication levels. The following example shows the
configuration for two instances of the forms authentication module.
[modules]
BA = pdwpi-ba-module
forms-authn-level1 = pdwpi-forms-module
forms-authn-level2 = pdwpi-forms-module

[common-modules]
authentication = forms-authn-level1
authentication = forms-authn-level2
authentication = BA

[forms-authn-level1]
login-form = level1-form

[forms-authn-level2]
login-form = level2-form

[BA]
...

50 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The last step in configuring authentication methods is to specify the authentication
methods. The authentication methods are set in the [common-modules] stanza of
the configuration file in their order of preference. For example:
[common-modules]
session = ssl-id
session = BA
session = session-cookie

authentication = cert
authentication = BA

post-authzn = ltpa

In the preceding example, the configuration settings ensure that:
v SSL session IDs are used to maintain session information as a first choice.
v BA headers, if available are used to maintain session information when an SSL

session ID is not available.
v Session cookies are used as a last resort to maintain session information when

neither SSL session IDs or BA headers are available.
v Certificates are used as the authentication method as a first choice.
v BA is used for authentication when a certificate is not available.
v LTPA cookies are to be added to the request as part of post-authorization

processing.

Configuring authentication for virtual hosts

Configuration of authentication methods can be achieved on a per virtual host
basis by specifying the methods directly in each virtual host stanza. For example:
[pdweb-plugins]
virtual-host = ibm.com

[ibm.com]
....
session = ssl-id
session = BA
session = session-cookie

authentication = cert
authentication = BA

post-authzn = ltpa

An alternative way to specify the authentication methods for virtual hosts is to
define a stanza for authentication method configuration. This allows multiple
virtual-hosts to share a module configuration. The module configuration stanza is
specified by the modules configuration entries in the virtual-host stanza. For
example:
[pdweb-plugins]
virtual-host = ibm.com
virtual-host = lotus.com

[ibm.com]
modules = ibm-lotus-module-stanza

[lotus.com]
modules = ibm-lotus-module-stanza

Chapter 3. Authentication and request processing 51

[ibm-lotus-module-stanza]
authentication = BA
session = BA
post-authzn = ltpa

When separate stanzas for authentication method configuration on a per-virtual
host basis are not defined in the configuration file, all virtual hosts use the entries
configured in the [common-modules] stanza; that is, the default value for the
modules stanza entry is common modules.

The following example sets up a virtual host called ibm.com that is configured to
use SSL session IDs where it can, BA headers where it can't use an SSL ID and has
BA headers, and uses session cookies as a last resort to maintain session
information. It supports certificate authentication ahead of basic authentication and
on successful authentication adds an LTPA cookie to the request to be handled by
the Web server. The example only shows the entries defined here.
[pdweb-plugins]
virtual-host = ibm.com

[modules]
ssl-id = pdwpi-ssl-id
session-cookie = pdwpi-session-cookie
BA = pdwpi-ba
cert = pdwpi-cert
ltpa = pdwpi-ltpa

[ibm.com]
session = ssl-id
session = BA
session = session-cookie

authenitcation = cert

post-authzn = ltpa

Further configuration of authentication can be achieved on a per virtual host basis
by creating virtual host specific authentication configuration stanzas. The example
below shows the configuration for two virtual hosts: ibm.com and lotus.com. Each
virtual host has module specific authentication configuration.
[pdweb-plugins]
virtual-host = ibm.com
virtual-host = lotus.com

[modules]
...

[ibm.com]
session = BA
session = session-cookie

authenitcation = BA
authentication = forms

[lotus.com]
session = session-cookie

authenitcation = BA
authentication = cert

[BA:ibm.com]
basic-auth-realm = "Access Manager - ibm.com"

52 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

[BA:lotus.com]
basic-auth-realm = "Access Manager - lotus.com"

Configuring the order of authentication methods

Security Access Manager Plug-in for Web Servers supports a variety of
authentication methods in a way that can be tailored for different requirements
and for different security needs. The type of authentication methods you choose
needs to be carefully considered and implemented in a way that is fail safe and
achieves your security objectives. When configuring authentication methods, the
order in which they appear in the configuration file is essential to the correct
operation of your plug-in software.

The flow chart below shows the plug-in logic used to select an authentication
module.

The plug-in calls each authentication module in the order it was configured until
one of the modules returns a credential for the user. If none of the configured
authentication modules is able to generate a credential, an authentication challenge
is sent to the user to prompt them to provide authentication information.

If an authentication challenge is required, then the first suitable authentication
module from the configured list is called to generate the commands needed to
produce the challenge. Not all authentication modules can generate a challenge.

For example, there is no challenge to request HTTP Headers — these are either
present in the request or not. In addition, an authentication module might be
unavailable because it is already being used to identify a proxy agent that is
forwarding requests to the plug-in. The most common authentication mechanisms
that can generate a challenge for the user are Basic Authentication (a BA challenge
is sent to the user) and forms-based authentication (a logon form is sent to the

Call first authentication

module in list

incoming request

User ID returned?

Call next authentication

module in list

Other configured

authentication modules to

try?

Authenticated user

Yes No

Yes

No authentication

information available.

Send user an

authentication

challenge.

No

Figure 2. Plug-in process flow for determining authentication module.

Chapter 3. Authentication and request processing 53

user). If no authentication method is available, the user cannot be authenticated
and the plug-in returns a "Forbidden" page.

The flowchart in figure 2 shows the process for selecting an authentication method
to send a challenge to the user.

Each configured authentication method is examined in the order in which it is
configured until one is found that satisfies the required level of authentication. If a
module is found that satisfies the authentication criteria, it is called to build the
challenge that is sent to the user.

If none of the configured authentication methods is suitable, then no authentication
is possible. The plug-in returns a "Forbidden" page to the user because the user
does not have the permissions required to access the requested resource and there
is no possibility to send them a challenge to authenticate at the required level.

As discussed previously, the [common-modules] stanza of the pdwebpi.conf
configuration file is where you specify the authentication methods you want to
use. The [authentication-levels] stanza of the configuration file defines step-up
authentication levels (see “Authentication-strength Protected Object Policy
(Step-up)” on page 136) as well as the ordering of authentication methods
configured in the [common-modules] stanza.

An authentication method defaults to a level of 1 when no entry for it is defined in
the [authentication-levels] stanza. Authentication order is then determined as the

Examine first

authentication module in

the list

request

Is the level high enough?

Examine next

authentication

module in list.

Does the authentication

method support a

challenge?

Are there other

authentication

modules to try?

Call module to build

challenge

Yes

Yes

No

Yes

No No authentication

possible

No

Is the authentication

method already used?

No Yes

Figure 3. Authentication challenge process logic.

54 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

highest authentication level down to the lowest authentication level for the
authentication methods defined in the [authentication-levels] stanza. If an
authentication level is shared by several modules, the sub-order is then determined
by the order in which the modules appear within the [common-modules] stanza.

To understand plug-in authentication it is useful to think of the plug-in asking two
questions for each request it processes:
1. Can I authenticate this request using the configured method of authentication?

If the answer to this question is no, then the plug-in asks the next question.
2. Can I generate an authentication request using the configured method of

authentication?

Consider the following configuration.
[common-modules]
authentication = BA

For an incoming request, authentication of the user is required if the ACL does not
permit unauthenticated users. The plug-in seeing BA as the only authentication
method configured, asks; "can I authenticate this request using basic
authentication?" If the request is new then the answer is no—the plug-in does not
know of this user. The plug-in then asks; "can I generate an authentication request
using basic authentication?" If basic authentication has been configured correctly,
the answer is yes. The plug-in prompts the user for an ID and password.

This is a simple example of authentication using Basic Authentication. It is likely
that you will want to configure more than one authentication method depending
on the security requirements of your object space.

Following is a more detailed example of the logic that the plug-in uses to give
priority to configured authentication methods.

The authentication logic discussed in the following paragraphs assumes that
unauthenticated users are not permitted to access the resource and that the
following configurations have been made to the pdwebpi.conf configuration file.
[common-modules]
authentication = BA
authentication = failover
authentication = forms

post-authzn = failover

[authentication-levels]
1 = BA
2 = failover

The preceding configuration specifies three authentication methods: BA, failover
cookies, and forms. Failover cookies are used for post-authorization processing.
The levels set in the [authentication-levels] stanza determine the order in which
the authentication methods are called to authenticate requests. Forms
authentication defaults to a level of 1 as no level has been defined for it in the
[authentication-levels] stanza.

Using the above configuration, the plug-in, when receiving a request, looks for a
failover cookie in the request header. The plug-in looks for a failover cookie before
BA data because failover is specified at level 2 in the [authentication-levels]
stanza. The [authentication-levels] stanza takes precedence over the order of the
authentication modules definitions in the [common-modules] stanza.

Chapter 3. Authentication and request processing 55

The plug-in asks the question, "Can I authenticate this request using a failover
cookie?" If the request has not been previously authenticated then the answer is
no, as the plug-in will have not previously constructed a failover cookie for the
request. The plug-in asks the second question, "Can I generate an authentication
request using the failover cookie?" The answer is no, because the failover cookie
module has no way of generating requests for authentication.

The plug-in moves to the next configured authentication method in the
[authentication-levels] stanza, which in the example is BA. The plug-in asks the
question; "can I authenticate this request using the BA header?" The answer is no,
as the request has not been previously authenticated.

The plug-in then asks the question; "can I generate an authentication request using
BA?" The answer is likely to be yes, and the user is prompted to enter a user ID
and password. A successful authentication produces an authorized session and a
failover cookie is inserted into the request header and used as the first method of
authentication for subsequent requests during the same session.

Should the BA module be unable to generate a method for authenticating the user,
the plug-in would default to the ordering of methods listed in the
[common-modules] stanza of the configuration file. In the configuration example
above, the plug-in would assign the priority of authentication methods thus:

level 1 = BA, forms
level 2 = failover cookie

If failover cookies and BA fail to provide a method for user authentication, the
plug-in would authenticate using forms.

Configuring post-authorization processing

Configured post-authorization modules are called after a request has been
authorized. Post-authorization modules determine if any other action needs to be
taken before a request is passed back to the plug-in for processing by the Web
server. All configured post-authorization modules are called to determine if any
need to take action on the request.

Post Authorization modules can be categorized as either:
v Modifying Requests for SSO — These post-authorization modules add

information (cookies or headers) that are used by the Web application to identify
the user without requiring a second authentication.

v Modifying Responses — These post-authorization modules modify responses
usually by adding headers or cookies to it. For example, the failover module
adds a failover cookie to responses.

v Special Functions — These post-authorization modules recognize the URI being
requested as the trigger for some special function. A special function indicates
that the request is handled by the plug-in. An example is eCSSO "vouch for"
requests.

Post-authorization modules are called in the order they appear in the configuration
file. Post-authorization modules specified "later" in the list have the ability to undo
or overwrite changes made by prior post-authorization modules.

56 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

For example; the following configuration will result in different plug-in behavior
depending on the order that BA and forms are specified in the [common-modules]
stanza.
[common-modules]
...
post-authzn = BA
post-authzn = forms

[BA]
...
strip-hdr = always

[forms]
...
create-ba-hdr = yes

The configuration above is a simple example of how a great deal of flexibility can
be achieved through the ordering of post-authorization modules and module
configuration.

Authentication configuration overview

As seen in the section “Configuring authentication” on page 49, it is the
authentication modules that perform the process of extracting authentication
information from requests. The actual authentication of requests is performed by
authentication mechanisms which validate authentication information. The
separation of roles between authentication modules and authentication
mechanisms allows custom libraries, developed against the external authentication
C API and written for WebSEAL, to be used with the plug-in.

The mechanisms for all authentication methods supported by Security Access
Manager Plug-in for Web Servers are configured in the [authentication-
mechanisms] stanzas of the pdwebpi.conf configuration file. Supported
authentication method entries include:
v Local (built-in) authenticators

Parameters for local authenticators specify the appropriate built-in shared library
(UNIX) or DLL (Windows) files.

v Custom external authenticators
The plug-in provides template server code that you can use to build and specify
a custom authentication mechanism against the external authentication C API.

Unlike the configuration for the [modules] stanza, the full file name is required
when configuring mechanisms in the [authentication-mechanisms] stanza. That is,
include the file prefix and the operating-system-specific extension.

Local authentication mechanisms

The following authentication mechanism entries specify local built-in
authenticators:

Table 13. Local Built-in Authenticators

Configuration Entry Description

Forms and Basic Authentication

passwd-ldap Client access with registry user name and password.

Client-side Certificate Authentication

Chapter 3. Authentication and request processing 57

Table 13. Local Built-in Authenticators (continued)

Configuration Entry Description

cert-ssl Client access using a client-side certificate over SSL.

HTTP Header, IP Address Authentication, IV Header with iv-remote-address activated.

http-request Client access through special HTTP header, IP address, or IV
Header with iv-remote-address activated.

Use the [authentication-mechanisms] stanza to configure the authentication
method and the implementation in the following format:

authentication_method_parameter = shared_library

External custom authentication mechanism entries

The following entries are available to specify custom shared libraries for external
authentication mechanisms:

Table 14. External Authentication Mechanism Entries

Configuration
entries

Description

passwd-cdas Client access with user name and password for a third-party registry.

token-cdas Client access with registry user name and token passcode.

cert-cdas Client access using a client-side certificate over SSL.

In addition to the authentication libraries there are two other standard Security
Access Manager libraries that can be used in the plug-in:
v passwd-strength

This library checks new passwords entered on the password change form.
v cred-ext-attrs

This library allows custom attributes (name/value pairs) to be specified for
inclusion in the credential.

See the IBM Security Access Manager for Web: Web Security Developer Reference for
details on building and configuring a custom shared library that implements an
external authentication mechanism.

Default configuration for plug-ins

By default the plug-in is set to authenticate clients using Basic Authentication (BA)
user names and passwords.

The plug-in is normally enabled for both TCP and SSL access. Therefore, a typical
configuration of the [authentication-mechanisms] stanza includes support for user
name and password and support for client-side certificates over SSL.

The following example represents the typical configuration of the
[authentication-mechanisms] stanza on Solaris:
[authentication-mechanisms]
passwd-ldap = libldapauthn.so
cert-ssl = pdwpi-sslauthn.so

58 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

To configure other authentication methods, add the appropriate entry with its
shared library.

Configuring multiple authentication methods

Modify the [authentication-mechanisms] stanza of the pdwebpi.conf configuration
file to specify the shared library to be used for any supported authentication
method. The following conditions apply when you configure multiple
authentication methods:
1. All authentication methods can function independently from each other. It is

possible to configure a shared library for each supported method.
2. The cert-cdas method overrides the cert-ssl method when both are configured.

You must enable one of these to support client-side certificates.
3. Only one password type authenticator is actually used when more than one is

configured. The plug-in uses the following order of priority to resolve multiple
configured password authenticators:
a. passwd-cdas

b. passwd-ldap

4. It is possible to configure the same custom library for two different
authentication methods. For example, you could write a custom shared library
to process both user name/password and HTTP header authentication. For this
example, you would configure both the passwd-cdas > http-request entries
with the same shared library. It is the responsibility of the developer to
maintain session state and avoid conflicts between the two methods.

Logout, change of password and help commands

Security Access Manager provides the following commands for supporting clients
who authenticate over HTTP or HTTPS.

pkmslogout

Clients can use the pkmslogout command to log out from the current session
when they use an authentication method that does not supply authentication data
with each request. When using an authentication method that supplies
authentication data with each request, the pkmslogout command clears the session
cache although credential information is still contained in the request header. In
this case, the user must close the browser to fully log out of the session.

The pkmslogout command is appropriate for authentication using token
passcodes, Forms authentication, and certain implementations of HTTP header
authentication.

Run the command as follows:
https://www.ibm.com/pkmslogout

The browser displays a logout form defined in the pdwebpi.conf configuration file:
[acctmgmt]
logout-success = logout_success.html

The logout-success entry can specify either a pre-defined HTML file (contained
within the base install_path/nls/html/C directory) or a URI. The specified URI
could be either a relative URI or an absolute URI.

Chapter 3. Authentication and request processing 59

Note: When using Internet Explorer, cookie prompting must be switched off (the
default browser setting). Otherwise, the cookie cache within the browser may
become corrupted, causing the logout process to hang. To disable cookie
prompting from within Internet Explorer, select Internet Options from the Tools
menu, then click on the Advanced button under the Privacy tab and ensure the
check box is not selected.

The pkmslogout command also allows the default HTML response page (such as
logout.html) to be replaced by a custom response page. The custom response page
is specified through a query string that can be appended to the pkmslogout URL
as follows:
https://www.example.com/pkmslogout?filename=[custom_logout_file|URL]

where:
v custom_logout_file is the file name (without directory information) of the custom

logout response page. This file must be located in the same nls/html/lang/
codeset directory (such as /opt/pdwebpi/nls/html/C/utf-8) that contains the
default HTML response forms. For example: /pkmslogout?filename=logout.html.

v URL is a valid URL to which the client will be redirected. For example:
/pkmslogout?filename=http://w3.ibm.com.

pkmspasswd

You can use this command to change your logon password when using Basic
Authentication (BA) or Forms authentication. This command is appropriate over
HTTP or HTTPS.

For example:
https://www.ibm.com/pkmspasswd

The browser displays a change of password form defined in the pdwebpi.conf
configuration file:
[acctmgmt]
password-change-form-uri = /pkmspasswd.form
password-change-uri = /pkmspasswd
password-change-success = password_change_success.html
password-change-failure = password_change_failure.html

You can modify the password_change_success.html and
password_change_failure.html files to suit your requirements.

pkmshelp

You can use this command to access help pages. This command is appropriate over
HTTP or HTTPS.

The name and location of help pages are defined in the pdwebpi.conf configuration
file:
[acctmgmt]
help-uri = /pkmshelp
help-page = help.html

You can modify the help.html file to suit your requirements.

60 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Password change issue with Active Directory on Windows

The following problem occurs for password changes when using Active Directory
as the Security Access Manager user registry and the Active Directory server is
running on Windows. Depending on certain Active Directory policy settings, old
passwords can still be used to log in to Security Access Manager after a password
change has occurred. By default, both the old and the new passwords continue to
work for approximately one hour after the password change. After one hour, the
old password stops working.

Windows introduced this behavior into Active Directory. See the Microsoft KB
article 906305 for information on what occurs and for instructions on disabling the
behavior if necessary.
http://support.microsoft.com/?id=906305

Configuring Basic Authentication
Basic Authentication (BA) is a standard method for authenticating clients by using
a user name and password.

Basic Authentication is defined by the HTTP protocol and is implemented over
HTTP and HTTPS.

Enabling Basic Authentication

By default, the plug-in is configured for BA authentication. The
[common-modules] stanza in the pdwebpi.conf configuration file defines the use of
BA for authenticating requests. That is:
[common-modules]
authentication = BA

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for basic authentication exists; that is:
[modules]
BA = pdwpi-ba-module

By default the BA authentication mechanism is given a level of 1 in the
[authentication levels] stanza of the configuration file. This setting relates to the
priority of authentication mechanisms for incoming requests.

Configuring the Basic Authentication mechanism
The passwd-ldap entry specifies the shared library that is used to handle user
name and password authentication.
v On UNIX, the file that provides the built-in mapping function is a shared library

called libldapauthn.
v On Windows, the file that provides the built-in mapping function is a DLL

called ldapauthn.

You can configure the user name and password authentication mechanism by
entering the passwd-ldap entry with the platform-specific name of the shared
library file in the [authentication-mechanisms] stanza of the pdwebpi.conf
configuration file – as indicated in the following list:
v Solaris

Chapter 3. Authentication and request processing 61

[authentication-mechanisms]
passwd-ldap = libldapauthn.so

v Windows
[authentication-mechanisms]
passwd-ldap = ldapauthn.dll

Setting the realm name

The realm name is displayed on the dialog that prompts the user for a user name
and password. The realm name is assigned to the basic-auth-realm entry in the
[BA] stanza of the pdwebpi.conf configuration file.
[BA]
basic-auth-realm = realm_name

Manipulating BA headers

You can configure the plug-in to supply protected applications with original or
modified client identity information by controlling the contents of the BA headers
that are sent to the Web server. The existing header that is sent from the client can
be:
v Stripped of all requests.
v Stripped of unauthenticated requests.
v Passed unchanged for all requests.

For clients that do not provide a BA header or for existing client header
information passed to the Web server, the header information can be:
v Set to a fixed user name and password.
v Have a fixed password sent (with the user name passed as the name of the

authenticated user).
v Be set using information from Security Access Manager GSO lockbox.

To manipulate the BA headers of incoming requests, the plug-in must be
configured to allow post-authorization processing using Basic Authentication. To
do this, add the entrypost-authzn and set it to the value BA in the
[common-modules] stanza of the pdwebpi.conf configuration file. That is:
[common-modules]
post-authzn = BA

The strip-hdr entry instructs the plug-in to either:

62 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 15. strip-hdr instructions to plug-in

Value Result

ignore Leave the header as is. The plug-in passes the original client BA
header to the resource without interference. This constitutes a direct
login to the resource that is transparent to the plug-in in situations
when you want to bypass plug-in authentication.

Setting this option can potentially allow unauthenticated users to
send BA headers to the Web server. You should only use this option if
you are sure you need it and you understand the security
implications.

When BA authentication is configured at the plug-in and the
protected resource attempts to authenticate the client with its own BA
challenge, the credentials of a user will not be accepted by the
protected resource. Other authentication mechanisms such as Forms,
configured at the plug-in, will pass the original client BA header to
the resource without interference.

always Always remove the Basic Authentication header information from any
client requests before forwarding the requests to the Web server. In
this case, the plug-in becomes the single security provider.

If you need to supply the Web server with some client information,
you can combine this option with IV header authentication to put
Security Access Manager client identity information into HTTP header
fields.
Note: If the protected server sends a BA challenge with this option
enabled, the client sees an authentication pop-up window but cannot
log in because their response is always removed.

unauth The BA header received from the client is removed from all requests
except those from users that have been authenticated by the plug-in
using Basic Authentication. This permits authenticated users to send
authenticated BA headers to the web server but prevents an
unauthenticated user from doing so.

The add-hdr entry in the [BA] stanza of the configuration file allows you to supply
client identity information in HTTP Basic Authentication (BA) headers. Supplying
client identity information in HTTP BA headers using the add-hdr parameter,
occurs after any processing by the strip-hdr entry functionality. The add-hdr entry
can be set as: none, gso, or supply.
v Set as none, a BA header is not added to the request.
v Set as gso, a GSO BA header is added to the request — refer to “Using global

single sign-on (GSO)” on page 154 for detailed information on configuring
plug-in GSO functionality.

v Set as supply, a static password and user name are added to the BA header.
These static password and user names are defined in the supply-password and
supply-username entries in the [BA] stanza of the configuration file.

v If the supply-username entry is not set, the user name in the BA header is
created using the Security Access Manager authenticated user name. In this case
the plug-in protected resource requires authentication from a Security Access
Manager identity.
When the add-hdr entry is set to supply and the supply-password and
supply-username entries are set, the specified user name and password are used

Chapter 3. Authentication and request processing 63

for all requests. The use of a common user name and password offers no basis
for the application server to prove the legitimacy of the client logging in with
that user name.
If clients always go through the plug-in to access resources, this solution does
not present any security problems. However, it is important to physically secure
resources from other possible means of access. Since this scenario has no
password-level security, plug-in protected resources must implicitly trust the
plug-in to verify the legitimacy of the client. The registry must also recognize the
Security Access Manager identity in order to accept it.

If supply-username is not set and the user is unauthenticated then no BA header is
added to the request.

Specify UTF-8 encoding of BA headers

By default BA headers use UTF-8 encoding. This can be overridden by setting the
use-utf8 stanza entry to false.
[BA]
use-utf8 = false

For more information on plug-in support for UTF-8 encoding, see “Language
support and character sets” on page 45.

Configuring authentication by using forms
Security Access Manager supports authentication by using forms as an alternative
to the standard basic authentication mechanism.

With forms authentication, the user is prompted to enter authentication
information into a configurable form rather than the standard basic authentication
logon prompt.

When you use forms-based logon, the browser does not cache the user name and
password information as it does with basic authentication.

Enabling forms authentication

Forms must be configured as an authentication module as well as a
pre-authorization module. The following configuration entries must exist in the
[common-modules] stanza of the pdwebpi.conf configuration file:
[common-modules]
authentication = forms
pre-authzn = forms

When using forms authentication, the plug-in must also be configured to use forms
for pre-authorization processing.

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for forms authentication exists; that is:
[modules]
forms = pdwpi-forms-module

64 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring the forms authentication mechanism

The passwd-ldap entry specifies the shared library used to handle user name and
password authentication.
v On UNIX, the file that provides the built-in mapping function is a shared library

called libldapauthn.
v On Windows, the file that provides the built-in mapping function is a DLL

called ldapauthn.

The user name and password authentication mechanism is set by entering the
passwd-ldap entry with the platform-specific name of the shared library file in the
[authentication-mechanisms] stanza of the pdwebpi.conf configuration file, as in
the following:

Solaris:
[authentication-mechanisms]
passwd-ldap = libldapauthn.so

Windows:
[authentication-mechanisms]
passwd-ldap = ldapauthn.dll

Customizing HTML response forms

Forms authentication requires you to use a custom logon form. By default, the
sample login.html form is located on the directory, install_path/nls/html/lang/
charset.

Where lang is taken from the NLS configuration. On US English systems, the lang
directory is called C and charset is utf-8.

The login-form entry in the [forms] stanza of the configuration file defines the file
name of the form presented to the user during log on. The path of the file should
be relative to the translated pdwebpi HTML directory (for example
pdwebpi/nls/html/lang/charset).
[forms]
login-form = login.html

The configured form may also be a valid redirect URI that can pass variable macro
data. For example:
[forms]
login-form = auth/login.html?user=%USER%

Note: Removal of the wpi_url field from the login.html form, will cause POST
data, submitted with the login form, to be available in the HTTP request as POST
data variables. This includes the user name and password used to login to Security
Access Manager. Also, removing the wpi_url field from a form disables all POST
data caching functionality and macros such as %POST_URL% will no longer be
supported.

Customizing the forms login URI

It is possible to have multiple instances of the forms login module used within a
single virtual host. In such instances it is necessary to change the URI POSTed to

Chapter 3. Authentication and request processing 65

when the login form is submitted for each separate instance of the forms login
module. The login-uri entry in the [forms] stanza controls this URI. If changed
from the default, the form specified by the login-form entry (see “Customizing
HTML response forms” on page 65) must be updated to reflect the change.

Creating a BA Header

Forms authentication provides the ability to create a BA header based on the user
name and password provided in the login form. Creation of the header provides
an easy single sign-on mechanism that can be used when the back-end application
requires basic authentication, and the user name and password match that used by
Security Access Manager.

BA header creation is handled by the forms post-authorization module. Add an
entry for forms post-authorization processing to the [common-modules] stanza of
the plug-in configuration file:
[common-modules]
post-authzn = forms

The create-ba-hdr entry within the [forms] stanza of the configuration file enables
or disables the creation of BA headers, for example:
[forms]
create-ba-hdr = yes

By default forms authentication does not create the BA header - create-ba-hdr is
set to no. Regardless of how the entry is set, a BA header is not created when the
user is not successfully authenticated and a header is not created when the
password of the user has expired.

Note: If another module after the forms module in the post-authzn list overwrites
the BA header (or removes it) then this function does not work. It is advisable to
have the forms module specified as the last in the post-authzn list.

If UTF-8 encoding is required for BA headers, set the following configuration
entry:
[forms]
use-utf8 = true

For more information on plug-in support for UTF-8 encoding, see “Language
support and character sets” on page 45.

Configuring certificate authentication

Security Access Manager Plug-in for Web Servers supports secure communication
with clients by using client-side digital certificates over SSL. With this
authentication method, certificate information such as the Distinguished Name or
DN, is mapped to a Security Access Manager identity.

Mutual authentication using certificates

Authentication using digital certificates takes place in two stages:
v The Web server where the plug-in is located identifies itself to SSL clients with

its server-side certificate.

66 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

v The Web server uses its database of Certificate Authority (CA) root certificates to
validate clients accessing the server with client-side certificates. The following
process takes place:

1. An SSL client requests a connection with a Web server through the plug-in.
2. In response, the Web server sends its public key using a signed server-side

certificate. This certificate has been previously signed by a trusted third-party
certificate authority (CA).

3. The client checks whether the certificate's issuer is one that it can trust and
accept. The client's browser usually contains a list of root certificates from
trusted CAs. If the signature on the Web server's certificate matches one of
these root certificates, then the server can be trusted.

4. If there is no match for the signature, the browser informs its user that this
certificate was issued by an unknown certificate authority. It is then the
responsibility of the user to accept or reject the certificate.

5. If the signature matches an entry in the browser's root certificate database,
session keys are securely negotiated between the client and the Web server.
The end result of this process is a secure channel over which the client can
authenticate (for example, using a user name and password). After successful
authentication, the client and server can continue to communicate securely
over this channel.

6. The client sends its public key certificate through the plug-in to the Web
server.

7. The Web server attempts to match the signature on the client certificate to a
known CA using the Web server's certificate store.

8. If there is no match for the signature, an SSL error code is generated and sent
to the client.

9. If there is a match for the signature, then the client can be trusted.
Authentication of the client takes place, resulting in a Security Access
Manager identity.

10. Session keys are securely negotiated between the client and the Web server.
The end result of this process is a secure and trusted communication channel
between the mutually authenticated client and server.

Enabling certificate authentication

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable authentication using certificates,
assign cert to the authentication configuration entry:
[common-modules]
authentication = cert

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and the associated shared library name. Ensure that the
entry for certificate authentication exists:
[modules]
cert = pdwpi-certificate-module

Note: For installations on IHS, you must configure the Web server to request
certificates from clients.

Chapter 3. Authentication and request processing 67

Configuring the certificate authentication mechanism
The cert-ssl entry specifies the shared library for mapping certificate authentication
information.

On UNIX, the file that provides the built-in mapping function is a shared library
called libpdwpi-sslauthn.

On Windows, the file that provides the built-in mapping function is a DLL called
sslauthn.

You can configure the certificate authentication mechanism by entering the cert-ssl
entry with the platform-specific name of the shared library file in the
[authentication-mechanisms] stanza of the pdwebpi.conf configuration file.
v Solaris

[authentication-mechanisms]
cert-ssl= libpdwpi-sslauthn.so

v Windows
[authentication-mechanisms]
cert-ssl = pdwpi-sslauthn.dll

Note: The pdwpi-sslauthn authentication mechanism requires the subject DN in
the certificate of the user to exactly match the registry DN of the user. If you need
to use a more complicated mapping, a customized authentication mechanism must
be developed. See the IBM Security Access Manager for Web: Web Security Developer
Reference for instructions on building authentication mechanism modules. These
instructions also apply to the Plug-in for Web Servers.

Configuring authentication using RSA SecurID tokens

Security Access Manager Plug-in for Web Servers supports authentication using an
RSA® SecurID® token passcode supplied by the client. To permit communications
with remote RSA servers, the RSA SecurID client must be installed and configured
on the plug-in enabled server for token authentication to work. The minimum
supported SecurID client version is 6.0.

Note: The RSA ACE/Agent client is supported on all platforms except for Linux
on System Z.

RSA's ACE/Servers authenticate several different tokens, including software tokens
and handheld microprocessor controlled devices.

SecurID software tokens are binary programs that run on either workstations,
smart-cards, or as a plug-in to a Web browser. SecurID software tokens can also
run as an application. The application displays a window into which a user enters
a personal identification number (PIN), and the software token computes the
passcode. The user can then authenticate to Security Access Manager plug-in for
Web servers by entering the passcode into a login form.

The most typical form of SecurID Token is the handheld device. The device is
usually a key fob or slim card. The token can have a PIN pad onto which a user
enters a PIN in order to generate a passcode. When the token has no PIN pad the
passcode is created by concatenating the PIN and tokencode of the user. A

68 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

tokencode is a changing number displayed on the key fob that is regenerated at
one minute intervals. A user enters the PIN and tokencode to authenticate to the
ACE/Server.

Security Access Manager Plug-in for Web Servers supports both RSA token modes:
v Next tokencode mode

This mode is used when the user enters the correct PIN but an incorrect
tokencode. Typically, the tokencode must be entered incorrectly three times in a
row to send the token card into next tokencode mode. When the user inputs the
correct passcode, the tokencode is automatically changed. The user waits for the
new tokencode, and then enters the passcode again.

v New PIN mode
The token can be in New PIN mode when the old PIN is still assigned. The
token is placed in this mode when the administrator wants to enforce a
maximum password age policy. The token is also in New PIN mode when the
PIN is cleared or has not been assigned. A PIN can be cleared by an
administrator when the user has forgotten it or suspects that it has been
compromised.

SecurID PINs can be created in different ways:
v User-defined
v System-generated
v User-selectable

PIN modes are defined by the method of creation, and by rules that specify entries
for password creation and device type.

The plug-in supports the following types of user-defined PINs:
v 4-8 alphanumeric characters, non-PINPAD token
v 4-8 alphanumeric characters, password
v 5–7 numeric characters, non-PINPAD token
v 5-7 numeric characters, PINPAD token
v 5-7 numeric characters, Deny 4-digit PIN
v 5-7 numeric characters, Deny alphanumeric

The plug-in does not support the following types of new PINs:
v System-generated, non-PINPAD token
v System-generated, PINPAD token
v User-selectable, non-PINPAD token
v User-selectable, PINPAD token

Token users cannot reset their PIN without an ACE administrator first clearing the
token or putting it in new PIN mode. This means users with valid PINs cannot
post to pkmspassword.form. Attempts to access this form return an error message.

Authentication workflow for tokens in new PIN mode

The following process occurs for the authentication of tokens in new PIN mode:
1. A user requests a protected Web object requiring token authentication.
2. The plug-in prompts the user for their user name and passcode.
3. The user enters their user name and tokencode and submits the form. When

the user has no PIN, either because the token card is new or the administrator

Chapter 3. Authentication and request processing 69

reset the PIN, the tokencode is the same as the passcode. When the user has a
PIN, but the token card is in new PIN mode, the user enters the PIN plus the
tokencode.

4. The plug-in sends the authentication request to the ACE/Server.
5. The ACE/Server processes the request as follows:

a. If the authentication is unsuccessful, the result is returned to the plug-in
which displays an error page to the client and the client prompted to
re-authenticate.

b. If the token was not in new PIN mode, the user is authenticated and given
access to the requested protected Web object.

c. If the token is in new PIN mode, the ACE/Server returns the NEW_PIN
error code to the plug-in.

6. The plug-in presents to the user the password expired form.
7. The user enters the tokencode or passcode and the new PIN and posts it to

the plug-in.
8. The plug-in checks to see if a password strength server is deployed.

a. If a password strength server is not deployed, the plug-in continues to
step 9.

b. If a password strength server is deployed, the plug-in checks the new PIN.
If the PIN is valid, the plug-in continues to step 9. If the PIN is not valid,
he plug-in returns to step 6.

9. The plug-in authentication library sends the tokencode and new PIN to the
ACE/Server.

10. The ACE/Server returns a response code.
11. If the PIN set call to the ACE/Server is successful, the plug-in returns the

originally requested protected Web object to the client. If the PIN set call fails,
authentication workflow returns to step 6.

Using token authentication with a password strength server

The plug-in password strength functionality is specific to particular authentication
mechanisms. This support enables security architects to develop different password
strength policies for different plug-in authentication mechanisms. A four-digit,
numeric PIN, for example, may qualify for the ACE/Server but would fail against
a more stringent password strength server.

Enabling token authentication

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable authentication using tokens, assign
token to the authentication parameter.

When authentication using tokens is enabled then tokens must also be configured
for pre-authorization processing. In the [common-modules] stanza of the
configuration file, construct a pre-authzn entry and assign it the value token. The
[common-modules] stanza should include the following two entries:
[common-modules]
pre-authzn = token
authentication = token

70 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and the associated shared library name. Ensure that the
entry for token authentication exists:
[modules]
token = pdwpi-token-module

Configuring the token authentication mechanism

The token-cdas entry specifies the shared library for mapping token passcode
authentication information.
v On UNIX the file that provides the built-in mapping function is a shared library

called libxtokenauthn.
v On Windows the file that provides the built-in mapping function is a DLL called

xtokenauthn.

The token shared library is installed as part of the Security Access Manager Web
Security Runtime (PDWebRTE) package. The location of this shared library is:

UNIX /opt/pdwebrte/lib

Windows
c:\Program Files\Tivoli\PDWebRTE\bin

By default, this built-in shared library is hardcoded to map SecureID token
passcode data. You can customize this file to authenticate other types of special
token data and, optionally, map this data to a Security Access Manager identity.
Refer to the IBM Security Access Manager for Web: Web Security Developer Reference
for API resources.

You can configure the token authentication mechanism by entering the token-cdas
entry with the platform-specific name of the shared library file in the
[authentication-mechanisms] stanza of the pdwebpi.conf configuration file.

For example:

Solaris:
[authentication-mechanisms]
token-cdas = libxtokenauthn.so

Windows:
[authentication-mechanisms]
token-cdas = xtokenauthn.dll

Customizing token response pages

The token-login-form entry in the [token-card] stanza of the configuration file
defines the file name of the form presented to the user client during a token logon.
The path of the file should be relative to the translated plug-in HTML directory
(for example, pdwebpi/nls/html/lang/charset), where lang is taken from the NLS
configuration. On US English systems, the lang directory is called C and charset is
utf-8.

The next-token-form entry in the [token-card] stanza defines the form displayed to
the user client to request the next token. The client is requested to enter another
token when the server cannot successfully authenticate the user from the first.
Inability to authenticate the user can be caused by a number of reasons. Most

Chapter 3. Authentication and request processing 71

commonly, though, the error occurs because the client and server clocks are not
synchronized. When authentication cannot succeed using the first token, the page
specified in the next-token-form entry is displayed to prompt for the next token.

The token-card stanza has the following format:
[token-card]
token-login-form = tokenlogin.html
next-token-form = nexttoken.html

Configuring SPNEGO authentication

SPNEGO authentication provides a Single Sign-on (SSO) capability for Windows
user accounts when protected objects are accessed using Internet Explorer. With
SPNEGO authentication the plug-in performs the server-side of the negotiation,
and Internet Explorer performs the client side.

When a user requests access to a secure Web server, Internet Explorer employs the
Windows login credentials of the user to participate in a negotiation with the Web
server to prove the authenticity of the user. Once the server has confirmed the
identity of the user, they are granted access if:
v The user is a member of the domain.
v SPNEGO has been enabled in the Authorization Server.
v The Authorization Server permits access.

Users accessing resources protected by plug-in SPNEGO authentication who are
not members of the domain or are using browsers other than Internet Explorer
must authenticate using another method, for example Basic Authentication or
forms.

Note: SPNEGO authentication module functionality can only operate correctly if
the Web server is configured to allow anonymous access. In the case of IIS,
Integrated Login must be unchecked, and Anonymous Access checked. In the case of
other Web servers, the standard configuration should be used.

Platform and user registry support

The SPNEGO authentication mechanism is available on all supported Web
server/platform/user-registry combinations.

When Active Directory is not the Security Access Manager user registry, users must
be replicated between the Active Directory registry and the Security Access
Manager user registry.

Limitations

The following plug-in features are not supported with SPNEGO authentication:
v POP or session timer based reauthentication of SPNEGO authenticated clients.
v Password change using pkmspasswd for user registries other than Active

Directory.
v Mapping of a user name through an external authentication mechanism.
v SPNEGO clients cannot log out of the plug-in. Clients must log out from the

workstation. Clients that access plug-in pkms command pages (excepting switch
user) receive the PKMS help page.

72 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

v Reauthentication when the inactive session timer expires for SPNEGO clients.
The user cache entry is deleted but the session ID is retained. Information in the
header received from the SPNEGO client is used to reauthenticate. The client
does not have to log in again, but the client receives a new session cache entry.

v Reauthentication when a user accesses an object with a reauthentication policy
attached. In this case access is denied, and user receives a message stating that
reauthentication is required.

Windows desktop single sign-on configuration

You must complete the following configuration tasks to implement Windows
desktop single sign-on using SPNEGO authentication with the plug-in.

Note: Not all steps are required on each platform.
1. “Configuring the embedded Kerberos client (UNIX only)”
2. “Configuring the plug-in server into the Active Directory domain” on page 75
3. “Mapping a Kerberos principal to the Active Directory user” on page 75
4. “Verifying authentication of the Web server principal (UNIX only)” on page 77
5. “Using the keytab file to verify plug-in authentication (UNIX only)” on page 78
6. “Enabling SPNEGO authentication within the plug-in” on page 78
7. “Enabling SPNEGO authentication within the Web server” on page 79

Configuring the embedded Kerberos client (UNIX only)
You must configure the Kerberos client that is embedded in Security Access
Manager.

About this task

To complete this configuration, you must create or modify the krb5.conf Kerberos
configuration file in the following directory:
/opt/PolicyDirector/etc/krb5.conf

Procedure
1. Copy /opt/PolicyDirector/etc/krb5.conf.template to /opt/PolicyDirector/

etc/krb5.conf.
2. Open the /opt/PolicyDirector/etc/krb5.conf file to edit the entries to match

your environment.
3. In the [libdefaults] stanza, set the following entries:

default_realm
Specify the Active Directory domain name in uppercase.

default_tkt_enctypes
Specify the cipher suite names supported by the Active Directory
Server that you are using to encrypt the WebSEAL AD Kerberos user
key.

Note: Windows Server 2008 R2 disables DES ciphers by default.
Available ciphers for Windows 2008 R2 are: rc4-hmac, aes128-cts, or
aes256-cts.

Chapter 3. Authentication and request processing 73

default_tgs_enctypes
Specify the cipher suite names supported by the Active Directory
Server that you are using to encrypt the WebSEAL AD Kerberos user
key.

Note: Windows Server 2008 R2 disables DES ciphers by default.
Available ciphers for Windows 2008 R2 are: rc4-hmac, aes128-cts, or
aes256-cts.

For example:
[libdefaults]
default_realm = EXAMPLE.COM
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac

The am_kinit application uses these settings to verify the Security Access
Manager Kerberos client configuration. See “Verifying authentication of the
Web server principal (UNIX only)” on page 77.

Note: Set the encryption cipher suites when you create the key tab file. See
“Mapping a Kerberos principal to the Active Directory user” on page 75.

4. In the [realms] stanza, create an entry for the default realm that was specified
by the default_realm entry of the [libdefaults] stanza. Set the following
entries:

kdc Specify the fully qualified host name of the Active Directory Key
Distribution Center (KDC), which is the host name of the Domain
Controller. For example mykdc.example.com:88.

default_domain
Specify the local DNS domain of the server running the plug-in. This
value is the domain that client browsers use to access the plug-in for
Windows single sign-on. For example, example.com.

An example for the default realm of EXAMPLE.COM is:
[realms]
EXAMPLE.COM = {

kdc = mykdc.example.com:88
default_domain = example.com

}

Note: The am_kinit application uses the KDC value to verify the Security
Access Manager Kerberos client configuration. See “Verifying authentication of
the Web server principal (UNIX only)” on page 77.

5. Configure entries in the [domain_realm] stanza to map local domains and
domain names to the Active Directory Kerberos realm.
For example:
[domain_realm]
www.examplefancy.com = EXAMPLE.COM
.examplefancy.com EXAMPLE.COM

6. Optional: To use SPNEGO as the authentication type for each junction level and
junction, configure the auth-challenge-type entry in the [server:jct_id]
stanza, where jct_id is the junction point for a standard junction (including the
leading "/" character) or the virtual host label for a virtual host junction.
For example:
[server:/test-jct]
auth-challenge-type = spnego

74 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring the plug-in server into the Active Directory domain
To participate in a Kerberos exchange with a browser, the plug-in server needs an
identity in the Active Directory Kerberos domain. The browser can then employ
the Windows login credential of the user to access the plug-in enhanced server.

See the Microsoft documentation for instructions on how to add an identity for the
plug-in server host into an Active Directory domain.

Note:

v On Windows, run the default plug-in server (first server instance) as a domain
user, instead of a local system user when contacting the Active Directory domain
controller.

v On UNIX, the user name must match the host name of the plug-in server host.
Do not use the full domain name. For example, for the system
diamond.example.com, create a user diamond.
– Do not require the user to change password at next login.
– Do not set the password to expire.
– The account must not be set to use DES ciphers.
– If you intend to use AES encryption for tickets and keys placed in the keytab,

modify the appropriate user account properties to allow it. The properties are:
- This account supports Kerberos AES 128 bit encryption

- This account supports Kerberos AES 256 bit encryption

Mapping a Kerberos principal to the Active Directory user

The Internet Explorer client request to the Active Directory domain controller
requests access to a Kerberos principal of name:
HTTP/DNS_name_of_plug-in_server@Active_Directory_domain_name

Map this name to the Active Directory user that represents the plug-in enhanced
server instance, as created in “Configuring the plug-in server into the Active
Directory domain.”

This mapping requires the Windows ktpass utility. The ktpass utility might not be
loaded on the Windows system by default. You can obtain it from the Windows
Support Tools package on the Windows CDs.

Windows:

Register the service principal name for the plug-in server. On the Active Directory
domain controller, run the ktpass command. For example, when the plug-in host is
diamond.example.com, and the Active Directory domain is IBM.COM the command is:
ktpass -princ HTTP/diamond.example.com@IBM.COM -mapuser diamond

UNIX:

Complete the following steps:

About this task

For UNIX systems, in addition to creating the user, you must create a keytab file
for use when verifying Kerberos tickets.

Chapter 3. Authentication and request processing 75

Procedure

1. On the Active Directory domain controller, run the ktpass command, entering
the following syntax on one line:
ktpass -princ HTTP/DNS_name_of_WebPI_server@ACTIVE_DIRECTORY_DOMAIN_NAME
{-pass your_password | +rndPass} -mapuser WebPI_server_instance
-out full_path_to_keytab_file -mapOp set -crypto cipher -ptype KRB5_NT_PRINCIPAL

where:

DNS_name_of_WebPI_server
Specifies the name of the Web Plug-in server.

ACTIVE_DIRECTORY_DOMAIN_NAME
Specifies the Active Directory domain name, in all upper case.

The domain name must map to the Active Directory user.

your_password
Specifies a password to set when the -pass parameter is used. The
password specified here resets the password for the Active Directory
user. A highly secure password, such as a randomly generated
password, is preferred. If you use a known password, retain it for use
in a later step to test your Kerberos configuration. You need this
password to test authentication from a UNIX computer to the Active
Directory Key Distribution Center.

WebPI_server_instance
Specifies the Web Plug-in server instance user identity.

full_path_to_keytab_file
Specifies the fully qualified path to the keytab file. The location of the
keytab file is arbitrary.

cipher Specifies the cipher to use.

Note: Windows Server 2008 R2 and Windows 7 clients disable DES
ciphers by default. Windows XP clients do not support AES and might
limit the ability to use AES.

For Windows Server 2003, the available cipher is RC4-HMAC-NT.

For Windows Server 2008 R2, the following cipher options are
available:

RC4-HMAC-NT
Specifies the Kerberos client cipher rc4-hmac.

AES256-SHA1
Specifies the Kerberos client cipher aes256-cts.

AES128-SHA1
Specifies the Kerberos client cipher aes128-cts.

ALL Generates keys in the keytab file for all ciphers. Use this value
when you require a mix of AES and RC4 clients.

If needed, use the am_ktutil command to remove unused DES
encrypted keys. If you use an AES value for the cipher, you must
update the Active Directory user account settings appropriately. Use
one or more of the following two properties:
v This account supports Kerberos AES 128 bit encryption

v This account supports Kerberos AES 256 bit encryption

76 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

2. Transfer the keytab files to the UNIX system using a secure transfer method.
For example, a suggested location is:
/var/pdwebpi/...

3. For best security practice, delete the keytab files from the Windows system.
4. Optional: If you are configuring SPNEGO for multiple virtual hosts, create a

separate keytab file for each virtual host. Repeat the ktpass command for each
principal in Active Directory. You must combine all keytabs into a single file
using the am_ktutil program. Available commands include the following:

rkt Reads in the keytabs.

list -e Verifies that the principal names and ciphers are correct.

wkt Writes out a new, combined keytab file.
For example:
/usr/krb5/sbin/am_ktutil ktutil:rkt eng_HTTP.keytab
ktutil: rkt www_HTTP.keytab
ktutil: rkt sales_HTTP.keytab
ktutil: list -e
slot KVNO Principal
------ ------ --------------------------------------
1 1 HTTP/eng.example.com@EXAMPLE.COM (arcfour-hmac)
2 1 HTTP/sales.example.com@EXAMPLE.COM (arcfour-hmac)
3 1 HTTP/www.example.com@EXAMPLE.COM (arcfour-hmac)
ktutil: wkt spnego.keytab
ktutil: quit

Use the combined keytab file as the keytab file for the plug-in server.

Note:

v If the –cipher ALL option was used when generating the keytab file, then
you can use the am_ktutil program to remove redundant keys from the
keytab.

v Kerberos can have alternate names for a particular cipher. For example
arcfour-hmac is an alias for rc4-hmac (the Windows RC4-HMAC-NT cipher).

5. On the UNIX system, assign ownership of the file to pdwebpi, and restrict
permissions on the keytab file so that only the owner can access it. For
example:
chown pdwebpi keytab_file
chgrp pdwebpi keytab_file
chmod 600 keytab_file

6. Repeat these steps for each plug-in instance on a UNIX server.

Verifying authentication of the Web server principal (UNIX only)

Skip this task if you used the +rndPass option to generate the keytab files.

Use the am_kinit program to verify that the Kerberos principal for the plug-in
enhanced server can authenticate. Use the password specified when you ran
ktpass in the previous task:
/usr/krb5/bin/am_kinit diamond@IBM.COM
Password for diamond@IBM.COM: server_password
am_klist

An output from am_klist showing the credentials for diamond@IBM.COM displays.

Chapter 3. Authentication and request processing 77

Using the keytab file to verify plug-in authentication (UNIX only)

Verify that the plug-in can authenticate using the keytab file created in “Mapping a
Kerberos principal to the Active Directory user” on page 75. Enter the following
am_kinit command as one continuous line:
am_kinit -k -t /var/pdwebpi/keytab-diamond/diamond_HTTP.keytab
HTTP/diamond.example.com@IBM.COM
am_klist

Output from am_klist showing the credentials for HTTP/
diamond.example.com@IBM.COM displays.

Enabling SPNEGO authentication within the plug-in
Modify the Web Plug-in configuration file to enable SPNEGO.

Procedure
1. In the [common-modules] stanza of the plug-in configuration file, pdwebpi.conf,

assign the value, spnego, to the authentication entries.
For example,
[common-modules]
authentication = spnego

2. In the [authentication-mechanisms] stanza, set the value of the kerberosv5
entry to the Security Translation Layer Interface (stli) shared library. Use the
absolute path to the library. For example:

AIX: kerberosv5 = /opt/PolicyDirector/lib/libstliauthn.a

Linux or Solaris
kerberosv5 = /opt/PolicyDirector/lib/libstliauthn.so

Windows:
kerberosv5 = C:\PROGRA~1\Tivoli\POLICY~1\bin\stliauthn.dll

3. In the [spnego] stanza, complete the following tasks:
a. Set the spnego-krb-service-name entry to one of the following values:

v HTTP

v HTTP@ fully_qualified_host_domain_name

b. On AIX, Linux, or Solaris systems, set the value of the spnego-krb5-keytab-
file entry to the keytab file. Use the full path name of the keytab file that
is to be used by the plug-in. On Windows, this option is ignored.

c. If you want user IDs to include the domain name as a means of
distinguishing users from multiple domains, set use-domain-qualified-name
to yes.
For example, if users with matching names could exist in separate domains,
such as "joe@one.example.com" and "joe@two.example.com," set the
use-domain-qualified-name entry to yes. The default value is no.

Note: When use-domain-qualified-name is set to no, the Web Plug-in builds
Security Access Manager credentials from the user ID short name only. For
example, if SPNEGO authentication returns a user name of
"name@one.example.com," the name is truncated to "name."

78 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Enabling SPNEGO authentication within the Web server
To enable SPNEGO for IIS, ensure the access policy of the Web server, which is set
in the Directory Security tab, is set to anonymous. For other Web servers, the
default configuration is acceptable. You must configure the Internet Explorer client
to enable SPNEGO.

Procedure
1. If the plug-in is installed on UNIX, configure the Local Intranet zone to include

the name of the UNIX server:
a. Select Tools > Internet Options.
b. From the Security tab select either Local Intranet > Sites > Advanced >

Trusted Sites > Sites.
c. Enter the UNIX server on which the plug-in is running.

2. Configure the integrated login behavior:
a. Select Tools > Internet Options.
b. From the Security tab click Custom Level.
c. Scroll down to the Logon section in the Security Settings dialog, and select

either Automatic... or Prompt... depending on the functionality you require.

Note: If the Trusted Sites option was selected when configuring the Local
Intranet zone, then the user will never be prompted to enter user name and
password information.

3. If the client is version 6 of Internet Explorer, you must configure the Integrated
Windows login. Complete the following steps:
a. Select Tools > Internet Options.
b. From the Advanced tab, check Enable Integrated Windows Login.
c. Restart the browser for the change to take effect.

Troubleshooting for SPNEGO, Windows desktop single
sign-on, and Kerberos

See the section describing solutions to common Web security SPNEGO problems in
the IBM Security Access Manager for Web: Troubleshooting Guide.

Configuring NTLM authentication (IIS platforms only)
You might need to configure NT LAN Manager (NTLM) authentication.

About this task

Previous versions of the Windows platform provided a rudimentary Single Sign-on
(SSO) mechanism known as NT LAN Manager (NTLM) authentication. This
method of authentication is based on hashing algorithms providing a similar level
of security and operation as that of Basic Authentication. The plug-in supports
NTLM authentication to facilitate backwards compatibility between modern
Windows platforms (XP, 2000) and older systems such as Windows NT. The
plug-in supports NTLM on the Windows IIS platform only. UNIX platforms are
not supported.

Procedure
1. Assign the value, ntlm, to the authentication entry in the [common-modules]

stanza of the plug-in configuration file, pdwebpi.conf.

Chapter 3. Authentication and request processing 79

[common-modules]
authentication = ntlm

2. Ensure the access policy of the IIS Web server is set to anonymous.
3. To configure Internet Explorer for participation in NTLM (and SPNEGO)

exchanges:
a. Configure the integrated login behavior:

1) Select Tools > Internet Options.
2) From the Security tab click Custom Level.
3) Scroll down to the Logon section in the Security Settings dialog, and

select either Automatic... or Prompt... depending on the functionality you
require.
Note: If the Trusted Sites option was selected in step 1 above, then the
user will never be prompted to enter user name and password
information.

b. If the client is version 6 of Internet Explorer then you need to configure the
Integrated Windows login. To do this:
1) Select Tools > Internet Options

2) From the Advanced tab, check Enable Integrated Windows Login.
3) Restart the browser for the change to take effect.

The use-pre-windows-2000-logon-name entry in the [ntlm] stanza of the
plug-in configuration file can be used to configure either the Windows 2000 or
the pre-Windows 2000 user name formats.
By default, the ntlm module uses the Windows 2000 logon name to represent
the authenticated user in Security Access Manager. This is the user name portion
of the user name@domain.com logon name.
The use-pre-windows-2000-logon-name entry allows the pre-Windows 2000
logon name to represent the authenticated user in Security Access Manager.
This is the user name portion of the DOMAIN\user name logon name.
This entry is ignored if Security Access Manager uses Active Directory as its
user registry. With Active Directory, the Security Access Manager user name is
always the user name portion of the user name@domain.com logon name.

Configuring Web server authentication (IIS platforms only)
You might need to configure Web server authentication for IIS platforms.

About this task

Some Web servers provide the ability to perform authentication natively. One
example of this is the capability of IIS to perform Integrated Windows Login
(SPNEGO, NTLM or BA). The plug-in can be configured to utilize this native Web
server authentication trusting that the Web server has performed adequately secure
authentication checks. Currently Web server authentication for the plug-in is only
supported on IIS.

Procedure
1. Assign the value, web_svr_authn, to the authentication entry in the

[common-modules] stanza of the plug-in configuration file,pdwebpi.conf.
[common-modules]
authentication = web_svr_authn

2. Configure Internet Explorer for participation in NTLM (and SPNEGO)
exchanges:

80 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

a. Configure the integrated login behavior:
1) Select Tools > Internet Options.
2) From the Security tab click Custom Level.
3) Scroll down to the Logon section in the Security Settings dialog, and

select either Automatic... or Prompt... depending on the functionality you
require.

Note: If the Trusted Sites option was selected in step 1 above, then the
user will never be prompted to enter user name and password
information.

b. If the client is version 6 of Internet Explorer, configure the Integrated
Windows login. To do this:
1) Select Tools > Internet Options.
2) From the Advanced tab, check Enable Integrated Windows Login.
3) Restart the computer for the change to take effect.
The web-server-authn authentication module can be configured to use
either the Windows 2000 or the pre-Windows 2000 user name formats by
setting the use-pre-windows-2000-logon-name entry in the plug-in
configuration file under the [web-server-authn] stanza.
By default, the web-server-authn module uses the Windows 2000 logon
name to represent the authenticated user in Security Access Manager. This
is the user name portion of the user name@domain.com logon name.
The use-pre-windows-2000-logon-name entry allows the pre-Windows 2000
logon name to represent the authenticated user in Security Access Manager.
This is the user name portion of the DOMAIN\user name logon name.
This entry is ignored if Security Access Manager uses Active Directory as its
user registry. With Active Directory, the Security Access Manager user name
is always the user name portion of the user name@domain.com logon name.

Configuring failover authentication

Use of the IBM Security Access Manager session management server (SMS) is the
preferred solution for implementing a failover solution for plug-in enabled servers
as the SMS provides more secure failover functionality. The failover authentication
configuration described in this section is for customers not wanting to use the
SMS.

This section contains the following topics:
v “Failover authentication concepts”
v “Failover authentication configuration” on page 86

Failover authentication concepts

Failover authentication provides the ability to preserve an authenticated session
across replicated plug-in instances when the active plug-in instance becomes
unavailable. A failover cookie preserves the user information and recreates the user
credential when the original session becomes unavailable. This saves the client
from needing to re-authenticate manually. The plug-ins on replicated servers share
a common key that decrypts the credential information held in the cookie and
establishes the new session.

Chapter 3. Authentication and request processing 81

The failover facility is typically used by clients connecting to a replicated front-end
Web server through a load-balancing mechanism. It can be used over either HTTP
or HTTPS, or both.

Note: The plug-in SMS functionality discussed in “The Session Management
Server (SMS)” on page 116 also supports a failover mechanism for replicated
Security Access Manager environments.

In the above diagram, three identical instances of the same Web server are located
behind a load balancing server that directs requests to one of the three servers
depending on load and availability. Assume that each instance of www.ibm.com is
configured to authenticate client access using failover cookies and also configured
to use failover cookies for post-authorization processing.

A client accesses www.ibm.com and is directed to instance 1 of the server and
authenticates successfully. The client's credential is encrypted and stored in a
domain wide cookie that is stored at the client browser. If during the session
instance 1 fails or demand becomes too great, the client is directed to either
instance 2 or instance 3. The failover cookie stored in the client's browser is used to
automatically re-authenticate the client. The original session start time is kept with
the cookie so that the integrity of the session lifetime remains valid when an
automatic redirection to a failover server takes place.

Failover authentication library

A built-in failover authentication shared library is supplied for each of the
supported authentication methods. Each failover shared library mimics the shared
library for the corresponding authentication method and recovers any extended
attributes that were originally placed in the credential of the user.

Failover authentication is available for the following authentication methods:
v Basic or forms authentication (also known as password authentication)
v Token card authentication

Figure 4. Typical server architecture for failover cookies.

82 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

v Certificate authentication
v HTTP request authentication
v Cross-domain single sign-on (CDSSO)
v Kerberos authentication (SPNEGO)

The plug-in supplies one standard failover shared library that functions for all the
above authentication methods. This library is called libfailoverauthn on UNIX
systems, and failoverauthn on Windows. Alternatively, you can supply a custom
library that provides specific authentication capabilities required by your
environment.

For example, when both forms authentication and failover authentication are
enabled in a replicated plug-in environment, two separate libraries must be
configured in the plug-in configuration file. One library specifies the forms
authentication method library. The other library specifies the failover
authentication method library. Example configuration file entries would be:
[authentication-mechanisms]
passwd-ldap = /opt/pdweb/lib/libldapauthn.so
failover-password = /opt/pdweb/lib/libfailoverauthn.so

In this example, the passwd-ldap stanza entry specifies the plug-in's built-in forms
authentication library. The failover-password stanza entry specifies the plug-in's
built-in failover authentication library.

Addition of data to a failover cookie

The plug-in automatically adds specific data from the user session to each failover
cookie. The plug-in can be configured to add additional information from the client
data maintained in the credential cache. Also, the plug-in can be configured to add
specific user-defined data. For example, user attributes obtained by a custom
cross-domain authentication service can be added to the cookie.

By default the plug-in adds the following data to each cookie:
v User name

This name corresponds to the name used to identify the user in the registry

Note: When an authenticated user has used the plug-in's switch user function to
obtain the effective identity of another user, the identity of the other user is not
added to the cookie. Only the original authenticated user identity is added to
the cookie.

v Authentication method

The authentication method used to authenticate the user to the plug-in.
v Cookie creation time

The system time when the cookie was created.

The plug-in also creates an attribute list containing additional data. By default, the
attribute list contains one value:
v Authentication level

An integer value that corresponds to the plug-in's step-up authentication level
(also an integer value) that is assigned on the local plug-in server to the
authentication method. Step-up authentication enables a user to authenticate to a
different authenticate method without having to log out.

Chapter 3. Authentication and request processing 83

The plug-in defines additional user data that can be added to the cookie attribute
list:
v Session lifetime timestamp

When a user authenticates, the plug-in tracks the age or lifetime of the user
entry in the session cache. The session lifetime timestamp consists of the current
time, advanced by the number of seconds configured for the maximum time that
session data of a user can remain in the session cache. When the current system
time exceeds the timestamp value, the plug-in invalidates the entry of the user
in the session cache (including the user credentials).
The plug-in can be configured to add the session lifetime timestamp to the
cookie. When this timestamp is added to the cookie, the session lifetime timer
can be preserved across failover events. Thus, plug-in administrators can choose
whether or not to reset the client's session timer when the client session is
established on a replicated server.
Note that successful use of this feature is dependent on synchronization of
clocks between replicated plug-in enhanced servers. If clock skew becomes great,
sessions will expire at unintended times.

v Session inactivity timestamp

The plug-in also tracks the amount of time that an entry of a user in the session
cache of the plug-in has been inactive. When a user session is inactive for a
period of time longer than the value set for session inactivity, the plug-in
invalidates the session of the user.
The session inactivity timestamp can also be added to the failover authentication
cookie. This timestamp differs slightly from the session inactivity timestamp
maintained for the session cache of the plug-in. The system inactivity timeout
maintained for the cache is calculated by combining two values:
– The current system time
– The maximum number of seconds that a session of a user can remain

inactive.
When this value is added to the failover authentication cookie, it is combined
with one additional value:
– Maximum number of seconds (interval) between updates to the failover

authentication cookie
The setting for the interval between the updating of failover cookies affects
performance. Administrators must choose a balance between optimal
performance and absolute accuracy of the inactivity timer in the cookie. To keep
the inactivity timer most accurate, it should be updated every time the user
makes a request. However, frequent updating of cookie contents incurs overhead
and decreases performance.
Each administrator must choose an interval that best fits the plug-in
deployment. In some cases, an update of the failover cookie with every user
request is appropriate. In other cases, the administrator might choose to never
update the inactivity timer in the failover cookie.

v Additional extended attributes

Administrators can configure the plug-in to insert a customized set of attributes
into a failover cookie. Attributes can be specified individually or in a group. To
specify a group of attributes, use wildcard pattern matching in configuration file
entries.
This feature is useful in deployments that also use customized authentication
libraries, such as cross-domain authentication servers, to insert special attributes
into a user credential. By specifying those attributes in the plug-in configuration

84 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

file, the administrator can ensure that the attributes are available to add to the
re-created user credential during failover authentication.

Note: The maximum size of a failover authentication cookie is 4 kilobytes (4096
bytes).

Extraction of data from a failover cookie

When a failover authentication event occurs, the plug-in receives a failover
authentication cookie and by default extracts the following data from each cookie:
v User name
v Authentication method
v Cookie creation time

The plug-in first determines if the cookie is valid by subtracting the cookie creation
time from the system time, and comparing this value against the plug-in
configuration file entry for failover cookie lifetime.

If the cookie lifetime has been exceeded, the cookie is not valid, and failover
authentication is not attempted. If the cookie lifetime has not been exceeded, the
plug-in uses the user name and authentication method to authenticate the user and
build a user credential.

The plug-in next checks configuration settings to determine if additional cookie
data should be extracted and evaluated. Note that the plug-in does not by default
extract any other attributes from the failover authentication cookie. Each additional
attribute to be extracted must be specified in the plug-in configuration file.
Wildcard pattern matching can be used to obtain groups of attributes.

The plug-in can be configured to extract the following defined attributes:
v Authentication level

When this value is extracted, the plug-in uses it to ensure that the user is
authenticated with the authentication method necessary to maintain the specified
authentication level.
Note that the plug-in can obtain authentication levels from several different
places:
– Failover cookie
– Failover authentication library
– Cross-domain authentication service
– Entitlement service
The authentication level extracted from the failover cookie takes precedence over
levels obtained from the other places.

v Session lifetime timestamp
The plug-in can use this timestamp to determine if the user's entry in the
original server's session cache would have expired. If it would have, the plug-in
discards the cookie and all its potential credential attributes. The session lifetime
is not preserved, and the user is prompted to log in.

v Session inactivity timestamp
The plug-in can use this timestamp to determine if the user's entry in the
original server's session cache would have been inactive for too long. If it would
have, the plug-in discards the cookie and all its potential credential attributes.
The session lifetime is not preserved, and the user is prompted to log in.

Chapter 3. Authentication and request processing 85

Note: Successful use of these timestamps requires synchronization of clocks
between replicated plug-in servers. If clock skew becomes great, sessions will
expire or become inactive at unintended times.

v Additional extended attributes
These include user-defined customized attributes, such as those generated by
cross-domain authentication services. The plug-in adds the attributes to the user
credential.

Attributes that are not specified in the plug-in configuration file will be ignored
and not extracted. In addition, administrators can specify that certain attributes
must be ignored during failover cookie extraction. Although ignore is the default
behavior, this specification can be useful, for example, to ensure that user attributes
are obtained from the user registry instead of from the failover cookie.

Domain-wide failover authentication

The plug-in supports an optional configuration that enables failover authentication
cookies to be marked as available for use during failover authentication to any and
all other plug-in enhanced servers or WebSEAL servers in the Security Access
Manager domain.

When a client session goes through a failover authentication event to a replicated
plug-in enhanced server, the client continues to access the same set of protected
resources. When a client session goes through a failover authentication event to a
plug-in enhanced server that is not replicated, it is possible that a different set of
resources will be available to the client.

Such partitioning of resources within the Security Access Manager domain can be
done for performance reasons and for administrative purposes. This is common in
large Security Access Manager deployments.

Domain-wide failover authentication can be used to redirect a client to another
server at a time when the client's requests have led it to request a resource that is
not available through the local server. In this case, the client (browser) is redirected
to another plug-in enhanced server.

The receiving plug-in can be configured to look for failover authentication cookies.
The plug-in attempts to authenticate the client and recognizes the failover
authentication cookie. By using the cookie, the plug-in does not need to prompt
the client for login information, but instead can establish a session with the client
and construct a valid set of user credentials.

Failover authentication configuration
You can configure failover authentication.

About this task

If you are not familiar with failover authentication concepts, review “Failover
authentication concepts” on page 81.

Procedure
1. Stop the plug-in server.
2. To enable failover authentication, complete each of the following tasks:

a. “Enabling authentication using failover cookies” on page 87

86 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

b. “Specify the failover authentication library” on page 88
c. “Create an encryption key for cookie data” on page 88
d. “Specify the cookie lifetime” on page 89

3. Optionally, you can configure the plug-in to maintain session state
across failover authentication sessions. If this is appropriate for your
deployment, complete the following instructions:

a. “Add the session lifetime timestamp” on page 90
b. “Add the session activity timestamp” on page 91
c. “Add an interval for updating the activity timestamp” on page 91

4. Optionally, you can configure the plug-in to add extended attributes to
the failover cookie. See “Add extended attributes” on page 92.

5. When you have configured the plug-in to add attributes to the failover cookie,
you must configure the plug-in to extract the attributes when reading the
cookie: See “Specify attributes for extraction” on page 92.

6. Optionally, you can enable failover authentication cookies for use on
any plug-in enhanced server within the domain. If this is appropriate for
your deployment, see “Enable domain-wide failover cookies” on page 93.

7. If you need to maintain backwards compatibility with failover authentication
cookies generated by plug-in enhanced servers from versions prior to Version
6.0, complete the following instructions:
a. “Specify UTF-8 encoding on cookie strings” on page 89
b. “Require validation of a lifetime timestamp” on page 93
c. “Require validation of an activity timestamp” on page 94

8. After completing all the instructions applicable to your deployment, restart the
server.

Enabling authentication using failover cookies

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. Failover cookies can be configured to perform
authentication and post-authorization tasks.

Plug-ins configured for post-authorization processing using failover cookies,
encrypt and store a credential as a failover cookie in the transaction response.

Plug-ins, configured to use failover cookies for performing authentication,
re-authenticate clients using the encrypted credential from a failover cookie found
in the transaction request.

To enable authentication and post-authorization using failover cookies, assign the
reference 'failover' to the authentication and post-authzn parameters:
[common-modules]
authentication = failover
post-authzn = failover

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for failover authentication exists:
[modules]
failover = pdwpi-failovercookie-module

Chapter 3. Authentication and request processing 87

Specify the failover authentication library

Edit the plug-in configuration file. In the [authentication-mechanisms] stanza,
uncomment the entry for the authentication type (or types) that must support
failover cookies. Add the name of the plug-in failover cookie library appropriate
for the operating system type.

The default configuration file entry is:
[authentication-mechanisms]
#failover-password = failover_password_library_filename
#failover-token-card = failover_token_card_filename
#failover-certificate = failover_certificate_filename
#failover-http-request = failover_http_request_filename
#failover-cdsso = failover_cdsso_filename
#failover-kerberosv5= failover_kerberos_library

The plug-in supplies one standard failover shared library that functions for all the
above authentication methods. Refer to the following table for the library names:

Table 16. Failover authentication library file names

Operating system Library file name

Solaris libfailoverauthn.so

Linux libfailoverauthn.so

AIX libfailoverauthn.a

Windows failoverauthn.dll

For example, to enable failover authentication for clients who originally
authenticated with forms authentication on Solaris, uncomment the
failover-password entry and add the library name:
[authentication-mechanisms]
failover-password = libfailoverauthn.so

Alternatively, when you have developed a library that implements a customized
version of failover authentication for one or more authentication methods, insert
the name of the custom external authentication mechanism as the value for the
configuration file keyword. For example, if you developed a custom authentication
mechanism for forms authentication, enter the absolute path name:
[authentication-mechanisms]
failover-password = /dir_name/custom_cdas_failover_library.so

Create an encryption key for cookie data
Use the cdsso_key_gen utility to create the keys to secure the cookie data.

About this task

This utility generates a symmetric key that encrypts and decrypts the data in the
cookie.

Attention: If you do not configure the plug-in to encrypt failover authentication
cookies, and you have enabled failover authentication, the plug-in will generate an
error and refuse to start. Failover authentication cookies must be encrypted.

88 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Procedure
1. Run the utility on one of the replicated servers. From a command line, specify

the location of the key file you want to create. You must specify an absolute
path name. For example:

UNIX: # /opt/pdwebrte/bin/cdsso_key_gen absolute_pathname_for_keyfile

Windows:
MSDOS> C:\Program Files\Tivoli\PDWebrte\bin\cdsso_key_gen
absolute_pathname_for_keyfile

You can give the key file any appropriate name, such as
/opt/pdwebrte/lib/wpi.key.

2. Edit the plug-in configuration file. In the [failover] stanza, specify the keyfile
location.[failover] failover-cookies-keyfile =
absolute_pathname_for_keyfile

3. Manually copy the key file to each of the remaining replicated servers.
4. On each replicated server, edit the plug-in configuration file to supply the

correct path name to failover-cookies-keyfile in the [failover] stanza.

Specify the cookie lifetime

Edit the plug-in configuration file. Specify the valid lifetime for the failover cookie.
[failover]
failover-cookie-lifetime = 30

The default lifetime is 30 minutes.

Specify UTF-8 encoding on cookie strings

Strings within the failover cookie use UTF-8 encoding by default. This can be
changed using the following configuration entry:
[failover]
use-utf8 = true

UTF-8 should be used when user names or credential attributes in the cookie are
not encoded in the same code page as the one that the plug-in enhanced server is
using. By default, the plug-in supports UTF-8 encoding. When all servers in the
plug-in deployment use UTF-8 encoding, leave this value at the default setting of
true.

Backwards compatibility

Plug-in installations prior to Version 6.0 did not use UTF-8 encoding. Thus, cookies
created by these servers do not have UTF-8 encoding on their strings. When a
plug-in instance is operating with a plug-in from versions prior to Version 6.0, the
plug-in should not use UTF-8 encoding.

For backwards compatibility, set use-utf8 to false.

For more information on plug-in support for UTF-8 encoding, see “Language
support and character sets” on page 45.

Chapter 3. Authentication and request processing 89

Specify the authentication level

The plug-in provides a number of different ways to specify an authentication level.
For failover cookies, there are two methods that can be used. One method sets the
authentication level in the failover cookie. The other method sets the level when
calling the failover authentication library.

When both methods are used, the authentication level in the failover cookie takes
precedence over the level set when calling the library.

If neither of the methods are configured, the authentication level is set to the
authentication level associated with the failover method by the
[authentication-levels] stanza.

The two methods are:
v Specify authentication level in the failover authentication cookie.

Add the authentication level to the plug-in configuration file. You must use the
stanza entry keyword AUTHENTICATON_LEVEL:
[failover-add-attributes] or [failover-add-attributes:virtual-host]
AUTHENTICATION_LEVEL = add

The actual value for AUTHENTICATION_LEVEL is an integer that the plug-in tracks
internally. You do not need to specify the integer in this stanza.
To retain the authentication level optionally loaded into the cookie by the
originator, the value must also be configured to be preserved at the receiving
end using the following entry:
[failover-restore-attributes] or [failover-restore-attributes:virtual-host]
AUTHENTICATION_LEVEL = preserve

v Specify authentication level when calling the failover authentication library.
When configuring either the built-in plug-in failover authentication library or an
external authentication mechanism library, you can optionally specify an
authentication level to assign to the authenticated user. The authentication level
is an integer that maps to a specific authentication method, as part of the
plug-in's authentication strength feature.
Add a command line argument to the configuration file entry for the
appropriate failover authentication library. The syntax is:
[authentication-mechanisms]
failover_authentication_method = failover_authentication_libary& -l level_number

The level_number must correspond to a valid integer, as specified in the
[authentication-levels] stanza in the plug-in configuration file.
For example, to activate failover authentication for forms authentication on a
Solaris systems, and to assign to the user an authentication level of "3", create
the following configuration file entry:
[authentication-mechanisms]
failover-password = libfailoverauthn.so& -l 3

Add the session lifetime timestamp

The plug-in calculates the session lifetime timestamp by combining the following
values:
v The current system time.
v The maximum lifetime in seconds that an entry is allowed to exist in the plug-in

credential cache.

90 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

This maximum lifetime in seconds is specified in the plug-in configuration file
[session] stanza:
[sessions]
timeout = 3600

To add this value to the failover authentication cookie, add the following entry to
the plug-in configuration file:
[failover-add-attributes]
session-lifetime-timestamp = add

Note that this attribute cannot be set by wildcard matching. The exact entry
session-lifetime-timestamp must be entered.

Add the session activity timestamp

The plug-in calculates the session activity timestamp by adding together these
values:
v System time
v Maximum lifetime of inactive entries in the credential cache

The maximum lifetime for inactive entries is set in the [sessions] stanza in the
configuration file:
[session]
inactive-timeout = 600

The default value is 600 seconds.
v Interval for updating the failover authentication cookie

This value is set in the [failover] stanza in the plug-in configuration file:
[failover]
failover-update-cookie = -1

The default value is -1 seconds. A negative integer means the failover cookie is
only updated when authentication occurs or when the credential is refreshed.
For more information, see “Add an interval for updating the activity
timestamp.”

To add this value to the failover authentication cookie, add the following entry to
the plug-in configuration file:
[failover-add-attributes]
session-activity-timestamp = add

Note: This attribute cannot be set by wildcard matching. The exact entry
session-activity-timestamp must be entered.

Add an interval for updating the activity timestamp

Optionally, the session activity timestamp in the failover cookie can be updated
during the user's session.

This entry contains an integer value for interval (in seconds) between updating the
failover cookie's activity timestamp.

The default entry is:
[failover]
failover-update-cookie = -1

When failover-update-cookie is set to 0, the last activity timestamp is updated
with each request.

Chapter 3. Authentication and request processing 91

When failover-update-cookie is set to an integer less than 0 (any negative
number), the last activity timestamp is never updated.

When failover-update-cookie is set to an integer greater than 0, the session
activity timestamp in the cookie is updated at intervals of this number of seconds.

The value chosen for this stanza entry can affect performance. See “Addition of
data to a failover cookie” on page 83.

Add extended attributes

The plug-in can optionally be configured to place a copy of specified extended
attributes from a user credential into a failover authentication cookie. No extended
attributes are configured by default.

To add extended attributes, add entries to the [failover-add-attributes] stanza in
the plug-in configuration file. The syntax is:
[failover-add-attributes]
attribute_pattern = add

The attribute_pattern can be either a specific attribute name, or a case-insensitive
wildcard expression that matches more than one attribute name. For example, to
specify all attributes with the prefix tagvalue_, add the following entry:
[failover-add-attributes]
tagvalue_* = add

The order of the stanza entries is important. Rules that appear earlier in
[failover-add-attributes] take priority over those placed later in the stanza.

Attributes that do not match any of the wildcard patterns, or are not explicitly
specified, are not added to the failover cookie.

Specify attributes for extraction

The plug-in can optionally be configured to extract attributes from a failover
authentication cookie and place them into a user credential. No attributes are
configured for extraction by default.

Attributes to be extracted are declared in the [failover-restore-attributes] stanza in
the plug-in configuration file. The syntax is:
[failover-restore-attributes]
attribute_pattern ={preserve|refresh}

The value preserve tells the plug-in to extract the attribute and add it to the
credential. Values set by this method overrule attributes of the same name that
may have been set when the authentication mechanism created the new credential.

The value refresh tells the plug-in to conditionally extract the attribute and add it
to the credential only if an attribute of the same name was not added when the
authentication mechanism created the new credential.

The attribute_pattern can be either a specific attribute name, or a case-insensitive
wildcard expression that matches more than one attribute name. For example, to
extract all attributes with the prefix tagvalue_, add the following entry:
[failover-restore-attributes]
tagvalue_* = preserve

92 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Attributes that do not match any patterns specified with the preserve value are not
extracted from the failover authentication cookie.

The order of the stanza entries is important. Rules that appear earlier in
[failover-restore-attributes] take priority over those placed later in the stanza.

The following attributes cannot be matched by a wildcard pattern, but must be
explicitly defined for extraction:
v Authentication level

[failover-restore-attributes]
AUTHENTICATION_LEVEL = preserve

v Session lifetime timestamp
[failover-restore-attributes]
session-lifetime-timestamp = preserve

v Session inactivity timestamp
[failover-restore-attributes]
session-inactivity-timestamp = preserve

Enable domain-wide failover cookies

You can allow a failover authentication cookie to be used by any plug-in within
the same domain as the plug-in that creates the cookie. This feature is controlled
by a stanza entry in the [failover] stanza.

By default, domain-wide failover cookie functionality is disabled:
[failover]
enable-failover-cookie-for-domain = false

To enable this feature, set enable-failover-cookie-for-domain to true:
[failover]
enable-failover-cookie-for-domain = true

For information on the effects of enabling this stanza entry, see “Domain-wide
failover authentication” on page 86.

Require validation of a lifetime timestamp

The plug-in can optionally be configured to require that each failover authentication
cookie contain a session lifetime timestamp. The session lifetime timestamp is not
required by default. The default configuration file entry is:
[failover]
failover-require-lifetime-timestamp-validation = false

This stanza entry is used primarily for backwards compatibility.

Attention: For backwards compatibility with failover cookies created by plug-ins
prior to Version 6.0, set this entry to false. Failover authentication cookies created
by plug-ins prior to Version 6.0 do not contain this timestamp.
v When this value is false, and the session lifetime timestamp is missing from the

failover cookie, the receiving server will view the cookie as valid.
v When this value is true, and the session lifetime timestamp is missing from the

failover cookie, the receiving server will view the cookie as not valid.

Chapter 3. Authentication and request processing 93

v When this value is either false or true, and the session lifetime timestamp is
present in the failover cookie, the receiving server evaluates the timestamp. If
the timestamp is not valid, the authentication fails. If the timestamp is valid, the
authentication process proceeds.

Note: The session lifetime timestamp is configured separately from the session
activity timestamp.

Require validation of an activity timestamp

The plug-in can optionally be configured to require that each failover authentication
cookie contain a session activity timestamp. The session activity timestamp is not
required by default. The default configuration file entry is:
[failover]
failover-require-activity-timestamp-validation = false

This stanza entry is used primarily for backwards compatibility.

Attention: For backwards compatibility with failover cookies created by plug-ins
prior to Version 6.0, set this entry to false. Failover authentication cookies created
by plug-ins prior to Version 6.0 do not contain this timestamp.
v When this value is false, and the session activity timestamp is missing from the

failover cookie, the receiving server will view the cookie as valid.
v When this value is true, and the session activity timestamp is missing from the

failover cookie, the receiving server will view the cookie as not valid.
v When this value is either false or true, and the session activity timestamp is

present in the failover cookie, the receiving server evaluates the timestamp. If
the timestamp is not valid, the authentication fails. If the timestamp is valid, the
authentication process proceeds.

Note: The session activity timestamp is configured separately from the session
lifetime timestamp.

Configuring IV header authentication

Security Access Manager supports authentication using internally generated header
information supplied by a compatible client or a proxy agent. For historic reasons
these are called IV (IntraVerse) headers. When the plug-in enhanced Web server
receives requests from a trusted application such as WebSEAL or a multiplexing
proxy agent, IV headers may be inserted into the requests relayed to the plug-in
proxy server.

IV headers contain information that identify the originating client rather than the
relaying server. The information in the headers is used to construct an originating
client credential for authorization purposes. Similarly, if the plug-in enhanced Web
server relays requests to another Security Access Manager server that recognizes IV
headers, the plug-in proxy can insert IV headers to identify the originating client.

The plug-in can be configured to use IV headers for post-authorization processing
or for authenticating requests. Configured for post-authorization processing, the
plug-in, after a successful authentication, modifies a transaction request by
inserting the client's true identity as IV headers. These headers may then be
forwarded on to another server by the originating Web server.

94 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

If the plug-in is configured to use IV Headers to perform client authentication, the
plug-in creates a client credential using the identity extracted from an IV header
found in a transaction request. Because it is easy for clients to fake IV headers,
such a credential is created only if the request is received via a trusted
multiplexing proxy agent (MPA). See, “Supporting Multiplexing Proxy Agents
(MPA)” on page 110.

For authentication, IV headers can be configured to accept one, some, or all of
iv-user, iv-user-l, iv-creds, or iv-remote-address headers in the request as proof of
authentication when received through a proxy. The iv-remote-address header is
used to record the real remote address of the user.

Configured for post-authorization processing, IV headers are inserted with one,
some or all of the iv-user, iv-user-l, iv-creds, iv-groups, and/or iv-remote-address,
HTTP headers into the request.

Table 17. IV header field descriptions

IV Header Field Description

iv-user The short name of the Access Manger user. Defaults to
unauthenticated if the client is unauthenticated (unknown).

iv-user-l The full domain name of the user (long form). For example,
the registry distinguished name.

iv-groups A list of the groups to which the user belongs.

iv-creds Encoded opaque data structure representing the user's Security
Access Manager credential.

iv-remote-address The IP address of the client. This value could represent the IP
address of a proxy server or a network address translator
(NAT).

Note: Access Manager only trusts headers received from trusted frontends. A
frontend is considered trusted if it is recognized as a Multiplexing Proxy Agent
(MPA). For details on configuring the plug-in for supporting MPA's refer to
“Supporting Multiplexing Proxy Agents (MPA)” on page 110.

Enabling authentication using IV headers

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable authentication using IV headers,
assign the reference iv-headers to the authentication parameter:
[common-modules]
authentication = iv-headers

To enable IV headers for post-authorization processing, assign the value iv-headers
to the post-authzn entry in the [common-modules] stanza of the pdwebpi.conf
configuration file:
[common-modules]
post-authzn = iv-headers

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for IV header authentication exists:
[modules]
iv-headers = pdwpi-iv-headers-module

Chapter 3. Authentication and request processing 95

Configuring IV header parameters

IV header authentication entries are configured in the [iv-headers] stanza of the
pdwebpi.conf configuration file.

The accept entry specifies the types of IV headers that are accepted for performing
IV header authentication. By default the plug-in accepts all types of IV headers.
The valid options are, all, iv-creds, iv-user, iv-user-l, iv-remote-address. To enter
more than one header type, separate the values with a comma.

For example:
[iv-headers]
accept = iv-creds,iv-user

The generate entry specifies the type of IV headers to generate when forwarding
proxied requests. By default the plug-in generates all types of IV headers when
forwarding proxied requests. The valid options are: all, iv-creds, iv-user, iv-user-l,
iv-remote-address. To enter more than one header type, separate the values with a
comma.

Specify UTF-8 encoding of IV headers

Edit the plug-in configuration file. Specify whether or not the plug-in should use
UTF-8 encoding for IV headers.
[iv-headers]
use-utf8 = true

The default value is true.

For more information on plug-in support for UTF-8 encoding, see “Language
support and character sets” on page 45.

Configuring the IV header authentication mechanism for
iv-remote-address

When using iv-remote-address in the IV Header you will need to specify the
shared library for mapping HTTP authentication header information. The
http-request authentication mechanism specifies the shared library for mapping
HTTP authentication header information.
v On UNIX, the file that provides the built-in mapping function is a shared library

called libhttpauth.
v On Windows, the file that provides the built-in mapping function is a DLL

called httpauthn.dll.

You can configure the HTTP header authentication mechanism by entering the
http-request entry with the platform-specific name of the shared library file in the
[authentication-mechanisms] stanza of the pdwebpi.conf configuration file, that is:

Solaris:
[authentication-mechanisms]
http-request = libhttpauth.so

Windows:

96 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

[authentication-mechanisms]
http-request = httpauthn.dll

Configuring HTTP header authentication

Security Access Manager supports authentication through custom HTTP header
information supplied by the client or a proxy agent.

This mechanism requires a mapping function (a shared library) that maps the
trusted (pre-authenticated) header data to a Security Access Manager identity. The
plug-in can take this identity and create a credential for the user.

The plug-in assumes that custom HTTP header data has been previously
authenticated by a proxy agent. For this reason the module only works if the
plug-in is located behind an authenticated Web proxy agent, and the mpa-enabled
entry within the [pdweb-plugins] stanza is set to true.

By default, this shared library is built to map data from Entrust Proxy headers.

Enabling authentication using HTTP headers

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable authentication using HTTP headers,
assign the reference http-hdr to the authentication parameter; that is:
[common-modules]
authentication = http-hdr

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for HTTP header authentication exists:
[modules]
http-hdr = pdwpi-httphdr-module

Specifying header types

You must specify all supported HTTP header types in the [http-hdr] stanza of the
pdwebpi.conf configuration file.
[http-hdr]
header = header_type

A standard configuration of HTTP headers permits only one header to be specified,
for example:
[modules]
http-hdr = pdwpi-httphdr-module

To specify multiple HTTP headers, multiple instances of the HTTP header module
must be configured.

For example:
[modules]
entrust-client-header = pdwpi-httphdr-module
some-other-header= pdwpi-httphdr-module

[entrust-client-header]

Chapter 3. Authentication and request processing 97

header = entrust-client

[some-other-header]
header = some-other

Configuring the HTTP header authentication mechanism

The http-request entry specifies the shared library for mapping HTTP
authentication header information.
v On UNIX, the file that provides the built-in mapping function is a shared library

called libpdwpi-http-cdas.
v On Windows, the file that provides the built-in mapping function is a DLL

called pdwpi-http-cdas.

By default, this built-in shared library is hard-coded to map Entrust Proxy header
data to a valid Security Access Manager identity. You must customize this file to
authenticate other types of special header data and, optionally, map this data to a
Security Access Manager identity. See the IBM Security Access Manager for Web: Web
Security Developer Reference for API resources.

You can configure the HTTP header authentication mechanism by entering the
http-request entry with the platform-specific name of the shared library file in the
[authentication-mechanisms] stanza of the pdwebpi.conf configuration file.

For example:

Solaris:
[authentication-mechanisms]
http-request = libpdwpi-http-cdas.so

Windows:
[authentication-mechanisms]
http-request = pdwpi-http-cdas.dll

Cookie authentication

Cookie authentication provides the ability to authenticate and maintain session
information using HTTP Cookies. Cookie authentication is an extension of the
existing HTTP header authentication.

The auth-source entry in the [http-hdr] stanza of the configuration file can be
used to control whether the configured authentication data (header) is retrieved
from a HTTP header or from a cookie. See “[http-hdr]” on page 252.

Configuring IP address authentication

The IP Address of incoming requests can be used to both maintain session state
and to authenticate client requests using values in the client address headers.

Configuring the plug-in to use the IP address for maintaining session state is
invalid without also configuring it to use the IP address to authenticate the client
request. However, usage of the IP address to authenticate users is valid if the
plug-in does not use the IP address to track user sessions.

98 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Enabling authentication using the IP address

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable authentication using the IP address of
the request initiator, assign the reference ip-addr to the authentication entry as in
the following:
[common-modules]
authentication = ip-addr

To enable the use of the IP address to track user sessions, assign the reference
ip-addr to the session entry as in the following:
[common-modules]
session = ip-addr

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library names. Ensure that
the entry for IP address authentication exists, as in the following:
[modules]
ip-addr = pdwpi-ipaddr-module

Configuring the IP address authentication mechanism

The IP address authentication mechanism is the same as that for HTTP headers.
The http-request entry specifies the shared library for the IP address authentication
mechanism.
v On UNIX, the file that provides the built-in mapping function is a shared library

called libpdwpi-http-cdas.
v On Windows, the file that provides the built-in mapping function is a DLL

called pdwpi-http-cdas.

You can configure the IP address authentication mechanism by entering the
http-request entry with the platform-specific name of the shared library file in the
[authentication-mechanisms] stanza of the pdwebpi.conf configuration file.

For example:

Solaris:
[authentication-mechanisms]
http-request = libpdwpi-http-cdas.so

Windows:
[authentication-mechanisms]
http-request = pdwpi-http-cdas.dll

Configuring LTPA Authentication

The plug-in can use LTPA cookies to authenticate users. LTPA cookies can either be
provided by Security Access Manager WebSEAL or by IBM WebSphere server.

Enabling LTPA Authentication

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of LTPA for authenticating requests.

Chapter 3. Authentication and request processing 99

[common-modules]
authentication = ltpa

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for LTPA authentication exists; that is:
[modules]
ltpa = pdwpi-ltpa-module

Setting the Key Details

The actual LTPA cookie, which is received, is encrypted by the sender. The cookie
must be decrypted before authentication can take place. The [ltpa] stanza in the
pdwebpi.conf configuration file contains the key details required for the decryption
process:
[ltpa]
ltpa-keyfile = full path of keyfile
ltpa-stash-file = password stash file location
ltpa-password = password in lieu of the stash file
ltpa-cookie-name = name of the cookie containing the LTPA token
ltpa-lifetime = lifetime in seconds of the LTPA cookie
ltpa-generate-unauth = enables or disables the creation of LTPA cookies
for unauthenticated users

where:
v The ltpa-keyfile entry specifies the name of the keyfile supplied from the

originating machine. The keyfile entry is required.
v The ltpa-stash-file entry specifies the name of the file that contains the

password to the keyfile. This entry is optional, although if it does not exist, the
ltpa-password entry must exist. This entry takes precedence over any specified
ltpa-password.

v The ltpa-password entry is required only if the ltpa-stash-file entry does not
exist. It should contain the clear text password to the specified keyfile.

v The ltpa-cookie-name sets the name of the cookie in which the LTPA token is
stored. This entry is optional. If no value is defined, the default value LtpaToken
is used.

v The ltpa-lifetime entry specifies the LTPA cookie lifetime in seconds. This entry
is required.

v The ltpa-generate-unauth entry determines whether LTPA cookies are created
for unauthenticated users. LTPA cookies are not useful for unauthenticated users
and might result in unexpected behavior. This configuration option is only
provided for backwards compatibility with Security Access Manager Plug-in for
Web Servers versions 5.1 and earlier. These earlier versions incorrectly generated
LTPA cookies for unauthenticated users. The default value is false.

Configuring LTPA post-authorization processing

The LTPA module is configured for post-authorization processing as part of a
single sign-on solution to a WebSphere application server. See “Single sign-on to
WebSphere application server using LTPA cookies” on page 151 for configuration
details.

Handling LtpaToken2 cookies
The [ltpa2] module of the configuration file deals with the LtpaToken2 cookie,
which is used by IBMWebSphere Application Server.

100 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

For [ltpa2] configuration details, see “[ltpa2]” on page 262.

The LtpaToken2 cookie is encoded using enhanced security over the LtpaToken
cookie. To use the LtpaToken cookie see “[ltpa]” on page 261.

The ltpa and ltpa2 modules are independent and may be used together.

The ltpa2 stanza contains all of the details for the LtpaToken2 cookie-based
authentication, session and post authorization modules. As an authentication
module, this module allows sign-on to IBM Security Access Manager Plug-in for
Web Servers using an LtpaToken2 cookie. As a session module, this modules
allows session tracking using the value of the LtpaToken cookie. As a post
authorization module, this module is designed to allow single sign-on capability
with a WebSphere server.

Configuring the redirection of users after logon

Using the login-redirect module you can configure the plug-in to redirect users to
a specific URL after they have successfully been authenticated. This may be useful
in cases where you want all users to be directed to a portal rather than the Web
page they requested, or for presenting the user with a welcome page or the start
page for an on-line application.

The plug-in logon redirect functionality works independently of the method used
for authenticating users. A redirection does not occur for a step-up authentication
or for re-authentication.

Enabling user redirection
The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods.

To redirect the user to a specific URI after their initial logon and authentication,
assign the reference login-redirect to the pre-authzn parameter; as in the following:
[common-modules]
pre-authzn = login-redirect

Note: Place the login-redirect entry first in the pre-authorization module list,
otherwise, another authentication module redirect may take precedence. It must be
placed before the account management pre-authorization module.

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library names. Ensure that
the entry for login-redirect exists, as in the following:
[modules]
login-redirect = pdwpi-loginredirect-module

Configuring user redirection parameters

User redirection entries are configured in the [login-redirect] stanza of the
pdwebpi.conf configuration file.
[login-redirect]
redirect-uri = redirect uri

Chapter 3. Authentication and request processing 101

Use the redirect-uri entry to specify the URI you want users directed to following
a successful logon. The specified URI can either be a relative URI or an absolute
URI.

Using an external authentication service

The plug-in can be configured to accept authentication information from a
third-party application. This authentication information can be either in the form of
a user name or a privilege attribute certificate. A privilege attribute certificate is a
digital record of a user's credentials.

The plug-in passes requests for resources configured for external authentication
directly to the configured external authentication provider. The client negotiates
authentication with the third-party application without plug-in involvement. Once
the client is authenticated, the plug-in intercepts the response and constructs the
client credential using the authentication information contained in the intercepted
request.

The diagram shows a sample deployment using external authentication, wherein
the following processes can occur:
v An unauthenticated client requests a protected resource.

Web Plug-in EAI Application

1

Client

Authentication process initiated

Request with trigger URL

()Web Plug-in sets internal flag

Authentication response

()Web Plug-in extracts authentication data from HTTP headers

Web Plug-in builds credential

Response to user

2

3

4

5

Authentication request/response exchange

Figure 5. Sample dataflow for Extended Authentication Interface

102 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

v A redirect is returned to the configured redirect URL.
v The client authenticates to the External Authentication Server. These exchanges

are unauthenticated, so the resource must be accessible (as a result of the policy
you set) to such users. HTTPS is typically used for transmission integrity.

v At some point the client requests a special URI called a trigger URI.
v The exchanges are streamed through the Web Plug-in, which recognizes the URI

and sets a flag indicating that the response to the request should be examined to
see if it is an authentication response (that is, containing data relating to an
authentication operation).

v If it is not an authentication response, the response is returned to the client.
v If it is an authentication response, the Web Plug-in generates a credential from

the authentication data in the response.
v If a credential is not successfully generated, an AZN API error is returned to the

client.
v If a credential is successfully generated from the authentication data, the client is

directed to the originally requested resource.

Enabling the external authentication interface

To enable the use of the external authentication interface configure the ext-auth-int
module for both authentication, pre-authorization and response processing. That is:
[common-modules]
pre-authzn = ext-auth-int
authentication = ext-auth-int
response = ext-auth-int

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for ext-auth-int exists. That is:
[modules]
ext-auth-int = pdwpi-ext-auth-int-module

Configuring the external authentication interface

Entries for external authentication configuration are contained in the [ext-auth-int]
stanza of the plug-in configuration file.

The auth-url configuration entry identifies the URLs that should be ignored by the
plug-in and passed directly to the external authentication service. These URLs
should not be protected by Security Access Manager.

The entered values for the auth-url configuration entry can be either an absolute
URL, or a server relative URL.

For example:
[ext-auth-int]
auth-url =/eai/app?orig-url=%URL%

The redirect URL is restricted to the length supported by the client server. The
plug-in does not check the validity of the redirect URL against the length
restrictions imposed by the client server. You should limit the data returned in the
redirect URL to avoid errors.

Chapter 3. Authentication and request processing 103

Once a request has been identified as requiring authentication by an external
application, the plug-in checks each request for the trigger-url configuration entry,
which prompts the plug-in to create a client credential.

Configuring a matching string for the trigger URL limits the set of responses that
the plug-in needs to examine for authentication data. The configured trigger URLs
should be as specific as possible as this limits the number of requests and
responses between the client and the external service that the plug-in examines for
authentication data.

For example, a URL leading to a response from the external authentication server
might look like:
http://plugin.IBM.com/eai/page.asp?url=/return_login_data.asp

A corresponding trigger URI could be configured as:
trigger-url = /eai/page.asp*login*

The configured trigger URL can contain the following special characters which are
used when matching the request URL:
v ? : match any single character;
v * : match any number of characters;
v \ : turn off the special meaning of the character that follows;
v [] : match any one of the enclosed characters.

For example:
trigger-url =uri =/eai/page.asp*login*
trigger-url =uri =/cgi-bin/*

It is important that trigger-url information be concise. Responses which do not
contain correct authentication information are streamed back to the client. Such
additional inter-process communication between the Web server and the Plug-in
will have a negative impact on performance.

It is preferable to configure a relative rather than absolute URL for the trigger-url
entry. If you cannot avoid using an absolute URL then ensure that the absolute
URL is not subject to any restrictive Security Access Manager authorization
decisions.

More than one trigger-url can be specified. The plug-in pattern matches the trigger
URL against the full URL, including the query portion.

Once the trigger URL containing the authentication information is identified, the
plug-in examines the response header for configured headers. These are the
headers containing authentication data used to authenticate the user. By default the
configured header entries are:
redirect-url-hdr-name =am-eai-redir-url
pac-hdr-name =am-eai-pac
pac-svc-id-hdr-name =am-eai-pac-svc
user-id-hdr-name =am-eai-user-id
user-auth-level-hdr-name =am-eai-auth-level
user-qop-hdr-name =am-eai-qop
user-ext-attr-list-hdr-name =am-eai-xattrs

The following table provides more information on these header entries.

104 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 18. HTTP header authentication data

Authentication
Type Header Mandatory? Notes

Privilege Attribute
Certificate (PAC)

am-eai-pac Yes The PAC is a digital document
that contains authentication and
authorization attributes and
capabilities. This form of
authentication will take
precedence over the user ID
form of authentication. For more
information on the PAC, see the
IBM Security Access Manager for
Web: Authorization C API
Developers Reference.

PAC Service ID am-eai-pac-svc No The service ID that should be
used to convert the PAC into a
credential. If no service ID is
specified the default PAC service
will be used.

User ID am-eai-user-id Yes The ID of the user to generate
the credential for.

Authentication
Level

am-eai-auth-level No The authentication level at
which the generated credential
will sit. If no value is specified a
default value of 1 will be used.

Quality Of
Protection (QOP)

am-eai-qop No The quality of protection that
will be associated with the
credential. If no value is
specified it will default to None.

Extended
Attribute List

am-eai-xattrs No A comma delimited list of HTTP
header names that will be added
to the credential as extended
attributes.

Redirect URL am-eai-redir-url No Specifies the URL that the client
will be redirected to upon
successful authentication. If no
URL is specified, the cached
URL will be used. If no cached
URL is found, the URL first used
to trigger the authorization will
be used.

Session Lifetime am_eai_xattr_session
_lifetime

No If this special extended attribute
header is present, it will be
added to the credential as an
extended attribute. The session
lifetime for the newly created
session will be set to the value
of this extended attribute, which
over-writes the existing
max-sessions-lifetime setting in
the [sessions] stanza.

Chapter 3. Authentication and request processing 105

If you want the redirect URL (provided in the authentication response from the
EAI application) to take precedence over the originally requested URL in the
post-authentication redirect, set the use-redirect-url-first value to true. The default
value is false.
use-redirect-url-first = false

Adding extended attributes for credentials

You can add extended attributes for credentials.

This section contains the following topics:
v “Mechanisms for adding extended attributes to a credential”
v “Entitlement service configuration” on page 107

Mechanisms for adding extended attributes to a credential
The Security Access Manager Plug-in for Web Servers authentication process
accesses the Security Access Manager user registry and builds a credential for the
user. The credential contains user information that is needed to make access
decisions. This includes information such as user name and list of groups to which
the user belongs.

The plug-in supports several different mechanisms (services) that allow
administrators and application developers to extend the authentication process.
When the plug-in conducts the authentication process, it checks to see if any
external services have been implemented and configured. When they have, the
plug-in calls those services. The services can do their own processing to build a list
of extended attributes about the user identity. These extended attributes are added
to the user credential.

The following types of services are supported:
v Credential attribute entitlement service

This entitlement service is built-in to Security Access Manager by default. This
service obtains specified user information from a user registry (such as an LDAP
user registry) and inserts the data into an attribute list in the user credential.
This built-in credential attribute entitlement service is a generic entitlement
service that can be used by many resource managers. This service takes the place
of a previous method that required administrators to add "tag/value" entries to
the [ldap-ext-creds-tag] stanza in the pdwebpi.conf configuration file. In Version
6.0, you should use the built-in entitlement service to obtain user registry data.
For configuration information, see “Entitlement service configuration” on page
107

v Customized credential attribute entitlement service
When the built-in credential attribute entitlement service cannot provide all of
the information needed for your deployment, you can write your own credential
attribute entitlement service. Security Access Manager supports this as part of
the authorization API. For more information, see the IBM Security Access Manager
for Web: Authorization C API Developer Reference.

v Credential extended attributes external authentication mechanism.
The plug-in provides an external authentication API interface that can be used to
develop external authentication services.

106 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

You can use the plug-in's external authentication API to develop your own
external authentication service. This can be used when the need to obtain user
authentication information extends beyond entitlements information.
A credential extended attributes mechanism typically used when an application
needs to access information available only at authentication time, or when the
application needs to map a user ID used at authentication to the Security Access
Manager user ID. For more information, see the IBM Security Access Manager for
Web: Web Security Developer Reference.

Entitlement service configuration

To configure entitlement service, complete the instructions in the following
sections.
v “Step 1 — Determine the attributes to be added to the credential”
v “Step 2 — Define your use of the entitlement service”
v “Step 3 — Specify the attributes to be added to the credential”

Step 1 — Determine the attributes to be added to the credential

Each user attribute that you want to add to the user credential must be defined in
a Security Access Manager configuration file. Typically, this is done in the plug-in
configuration file.

Go to the Security Access Manager user registry (for example, an LDAP user
registry). Make a list of the names of each user registry entry that you want the
credential attributes entitlement service to extract from the registry and place into
the user credential. You will need the user DN and group DN also.

Step 2 — Define your use of the entitlement service
Take these steps to define your use of the entitlement service:

Procedure
1. Verify that the credential attributes entitlement service is configured. The

following default entry should be present in the plug-in configuration file:
[aznapi-entitlement-services]AZN_ENT_EXT_ATTR = azn_ent_ext_attr

Note: The plug-in automatically takes the value azn_ent_ext_attr and finds
the corresponding shared library. For example, on Solaris,
libazn_ent_ext_attr.so

2. Add an authorization API service definition entry to specify your usage of the
entitlement service. Add the entry in the [aznapi-configuration] stanza. The
entry must use the entry cred-attribute-entitlement-services. You can choose a
value, such as TAM_CRED_ATTRS_SVC. For example:[aznapi-configuration
]cred-attribute-entitlement-services = TAM_CRED_ATTRS_SVC

Step 3 — Specify the attributes to be added to the credential

The attributes to be added to the credential are configured in several stanzas. Add
this information to the plug-in configuration file.

Note: Alternatively, you can define the attributes in a separate file, to be called by
the entitlement service. For more information, see the IBM Security Access Manager
for Web: Authorization C API Developer Reference.

Review the following example entry.

Chapter 3. Authentication and request processing 107

[TAM_CRED_ATTRS_SVC]
eperson = azn_cred_registry_id
group = cn=enterprise, o=ibm

[TAM_CRED_ATTRS_SVC:eperson]
tagvalue_credattrs_lastname = sn
tagvalue_credattrs_employeetype = employeetype
tagvalue_credattrs_address = homepostaladdress
tagvalue_credattrs_email = email

[TAM_CRED_ATTRS_SVC:group]
tagvalue_credattrs_businesscategory = businesscategory

The stanza name [TAM_CRED_ATTRS_SVC] is the Service ID. Inside this stanza
are sources of attributes to be retrieved. The source names, such as user and group
are used to identify the source location in the registry. You need to define these.
The values for these sources are registry identifiers that exist in the registry. The
values can be existing credential attribute names. If this is the case, the service
automatically finds and uses the respective values.

Configure the registry attributes for each of the sources under the service stanza in
a separate stanza. The syntax of the separate stanza is the service ID library name
followed by a colon (:) and then the source name. This connection is necessary
because more than one service can be configured in the same file.

The configuration file entries contain mappings of user registry attributes to
user-defined credential attributes.

For example, in an LDAP user registry, the DN for a user could be cn=joeuser,
o=ibm

For this user, the LDAP user registry entries could be:
sn=Smith
employeetype=bankteller
homepostaladdress="3004 Mission St Santa Cruz CA 95060"
email=joeuser@bigco.com
businesscategory=finance

Using the example configuration entries shown above, the attribute list returned
would have the following entries:

Attribute name Attribute value

credattrs_lastname Smith

credattrs_employeetype bankteller

credattrs_address 3004 Mission St Santa Cruz CA 95060

credattrs_email joeuser@bigco.com

credattrs_businesscategory finance

Note that the service, source, and attributes can be multi-valued. If you specify the
same attribute name as a stanza entry keyword, then the attributes retrieved will
be added as a multi-valued attribute even when they come from different sources.

For example, more than one entitlement service can be chained together. This
enables values retrieved from one service. to be used as input values for another
service. Likewise, attributes can be retrieved from more than one DN in the user
registry. Thus, using the example above, you could add values from multiple users

108 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

(DNs) to one credattrs_businesscategory attribute, if you wanted a list of all the
businesscategory entries for a group of users.

For example, if you want to build an attribute called myemployeeinfo to add to the
credential, and you want this attribute to contain the last name and employee type
of everyone that authenticates, you could then define the following:
[myID]
source = azn_cred_authzn_id

[myID:source]
myemployeeinfo = lastname
myemployeeinfo = employeetype

Adding registry extended attributes to the HTTP header (tag value)
It is often useful to attach user-specific information from the registry (for example,
telephone number, e-mail address) to the headers of HTTP authenticated requests.

About this task

User-specific information allows multiple applications to access the attached
information without having to constantly query the registry. The nature of this
information is that it is relatively static and is never updated by any of the
applications that use it. This data is placed into the user credential as part of the
ivauthn authentication process. This information can also be attached to the users
credential through a user-implemented external authentication mechanism.

The following process flow describes the sequence of events:
v User-defined supplemental data from any field of a user's registry account is

added as extended attribute data in the user's Security Access Manager
credential.

v When configured for tag value post-authorization processing, the plug-in
extracts the extended attribute data and places it in the HTTP header of the
request.

v The back-end application can extract the data from the header without requiring
special code or the authorization API.

Follow the procedure to configure the plug-in for inserting registry extended
attribute information into an HTTP header.

Procedure
1. Configure tag value post-authorization in the Web Plug-in.

Refer to “Enabling tag value processing” for details on how to do this.
2. Add the extended attributes to the /PDWebPI/host object in Access Manager.

For example (entered as one line):
pdadmin> object modify /PDWebPI/host
set attribute HTTP-Tag-Value ldap-home-phone=homePhone

Enabling tag value processing

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable processing using tag values, assign the
reference tag-value to the post-authzn parameter:

Chapter 3. Authentication and request processing 109

[common-modules]
post-authzn = tag-value

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library names. Ensure that
the entry for tag value exists, as in the following:
[modules]
tag-value = pdwpi-tag-value-module

Configuring tag value parameters

Tag value entries are configured in the [tag-value] stanza of the pdwebpi.conf
configuration file.
[tag-value]
cache-definitions = yes
cache-refresh-interval = 60

The cache-definitions entry enables or disables caching of tag value definitions
that are attached to the object space. The cache-refresh-interval defines the refresh
interval in seconds for the cache of definitions.

If need be, you can configure a prefix to add to credential attribute names used for
tag-value HTTP headers. This prefix is:
v Used as a search string by the tag-value module when searching credential

attributes.
v Added to the session ID credential attribute.
v Added by the switch-user module to the credential attribute it uses to store the

administrator's user name.

Specify the prefix using the tag-value-prefix entry in the [pdweb-plugins] stanza
of the plug-in configuration file.

This entry can be overridden for a specific virtual host using a [virtual_host]
stanza for that virtual host. The default behavior is to have no prefix.

Supporting Multiplexing Proxy Agents (MPA)

Security Access Manager provides solutions for securing networks that use a
Multiplexing Proxy Agent (MPA). Multiplexing Proxy Agents (MPA) are gateways
that accommodate multiple client access.

Gateways establish a single authenticated channel to the secured Web server and
"tunnel" all client requests and responses through this channel. To the plug-in, the
information across this channel initially appears as multiple requests from one
client. The plug-in must distinguish between the authentication of the MPA server
and the additional authentication of each individual client.

A common example of such gateways are Wireless Access Protocol (WAP)
gateways. Security Access Manager WebSEAL also acts as an MPA when
configured with a junction to the host Web server to allow single sign-on between
WebSEAL and the plug-in. To configure such a solution, the iv-header
authentication module can be used. See Chapter 6, “Web single sign-on solutions,”
on page 149 for more details on configuring for SSO.

110 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Valid session data types and authentication methods

Because IBM Security Access Manager Plug-in for Web Servers maintains an
authenticated session for the MPA, it must simultaneously maintain separate
sessions for each client. Therefore, the session data and authentication method
used for the MPA must be different than the session data and authentication
method used by the client. The table below lists the valid session types for the
MPA and the client:

Table 19. Valid session data types for MPA

Valid Session Types

MPA-to-plug-in Client-to-plug-in

SSL Session ID

HTTP Header HTTP Header

BA Header BA Header

IP Address

Cookie Cookie

v The client cannot use an SSL session ID as the session data type.
v As an example, if the MPA uses a BA header for the session data type, the

client's choices for session data type include only HTTP header and cookie.
v If the MPA uses a HTTP header for session data, the client can use a different

HTTP header type.
v The server-specific cookie contains session information only; it does not contain

identity information.
v If MPA support is enabled, the use of SSL session IDs to maintain session state

changes. Normally, having SSL session IDs configured to maintain session state,
only the SSL session ID is used to maintain sessions for HTTPS clients. To allow
the MPA to maintain a session with an SSL session ID and have clients maintain
sessions using another method, this restriction is removed.

The authentication method used by the MPA-to-plug-in must be different than the
authentication method used by the client-to-plug-in. The table below lists the valid
authentication methods for the MPA and the client:

Table 20. Valid MPA authentication types

Valid Authentication Types

MPA-to-plug-in Client-to-plug-in

Basic Authentication Basic Authentication

Forms Forms

Token Token

HTTP Header HTTP Header

Certificate

IP Address

v As an example, if the MPA uses Basic Authentication, the client's choices for
authentication methods includes Forms, token, and HTTP header.

v Certificates and IP address authentication methods are not valid for use by the
client.

Chapter 3. Authentication and request processing 111

v Normally, if either Forms (or token) authentication is enabled for a particular
transport, Basic Authentication is automatically disabled for that transport. If
MPA support is enabled, this restriction is removed. This allows the MPA to log
on, for example, with Forms (or token) and clients to log on with Basic
Authentication over the same transport.

Authentication process flow for MPA and multiple clients
The following process flow occurs for MPA and multiple client authentication.

Procedure
1. Make the following configuration changes:

v Enable support for Multiplexing Proxy Agents in the configuration file.
v Create a Security Access Manager account for the specific MPA gateway.
v Grant Proxy ([PDWebPI]p) access for this account to the MPA Protected

Object for the virtual host to which proxied requests will be directed. In the
default configuration, this can be achieved by making the user a member of
the pdwebpi-mpa-servers group.

2. Clients connect to the MPA gateway.
3. The gateway translates the request to an HTTP request.
4. The gateway authenticates the client.
5. The gateway establishes a connection with the plug-in using the client request.
6. The MPA authenticates to the plug-in (using a method distinct from the client)

and an identity is derived for the MPA (that already has a plug-in account).
7. The plug-in verifies the MPA's membership in the pdwebpi-mpa-servers

group.
8. A credential is built for the MPA and flagged as a special MPA type in the

cache. Although this MPA credential accompanies each future client request, it
is not used for authorization checks on these requests.

9. Now the plug-in needs to further identify the owner of the request. The MPA
is able to distinguish the multiple clients for proper routing of logon prompts.

10. The client logs in and authenticates using a method distinct from the
authentication type used for the MPA.

11. The plug-in builds a credential from the client authentication data.
12. The session data type used by each client must be distinct from the session

data type used by the MPA.
13. The Authorization Server permits or denies access to protected objects based

on the user credential and the object's ACL permissions.

Enabling MPA authentication

The mpa-enabled entry in the [pdweb-plugins] stanza of the pdwebpi.conf
configuration file enables or disables MPA authentication. The valid settings are
true and false for enabling and disabling MPA authentication respectively. MPA
authentication is disabled by default. MPA authentication can be set for individual
virtual hosts by specifying the mpa-enabled entry in the [virtual_host] stanza of
the configuration file.

To identify a new session as being the primary session established by an MPA, an
authorization decision is made, testing for the Proxy ([PDWebPI]p) permission on
the MPA protected object. By default the MPA protected object is defined to be
/PDWebPI.

112 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

To override this default setting, for example to define different sets of principals as
representing MPAs for each virtual host, a value can be specified for the
mpa-protected-object configuration parameter. This entry may be overridden for
each virtual host by specifying a value for it in the [virtual_host] stanza of the
configuration file.

For example, to enable MPA access for the ibm.com virtual host but not the
lotus.com virtual host, use the following settings in the pdwebpi.conf configuration
file:
[pdmweb-plugins]
virtual-host = ibm.com
virtual-host = lotus.com

[ibm.com]
mpa-enabled = yes

To define members of the ibm-mpa-servers group as being MPAs for requests to
the ibm.com virtual host and lotus-mpa-servers group as being MPAs for requests
to the lotus.com virtual host, use the following configuration:
[pdweb-plugins]
virtual-host = ibm.com
virtual-host = lotus.com

[ibm.com]
mpa-enabled = yes
mpa-protected-object = /PDWebPI/ibm.com

[lotus.com]
mpa-enabled = yes
mpa-protected-object = /PDWebPI/lotus.com

and define the following Security Access Manager policy:
pdadmin> acl create ibm-mpa
pdadmin> acl modify ibm-mpa set group ibm-mpa-servers T[PDWebPI]p
pdadmin> acl create lotus-mpa
pdadmin> acl modify lotus-mpa set group lotus-mpa-servers T[PDWebPI]p
pdadmin> acl attach /PDWebPI/ibm.com ibm-mpa
pdadmin> acl attach /PDWebPI/lotus.com lotus-mpa

The mpa-protected-object configuration entry specifies the object against which the
authorization decision will be made.

Create a user account for the MPA

Refer to the IBM Security Access Manager for Web: Base Administration Guide and the
IBM Security Access Manager for Web: Web Portal Manager Online Help for
information on creating user accounts.

Add the MPA account to the pdwebpi-mpa-servers group

IBM Security Access Manager Plug-in for Web Servers creates a group for easily
administering MPA servers. This group is called pdwebpi-mpa-servers. The
default-pdwebpi ACL attached to /PDWebPI grants Proxy ([PDWebPI]p) permission
to members of the pdwebpi-mpa-servers group.

Chapter 3. Authentication and request processing 113

When installed in a Security Access Manager secure domain that has at least one
WebSEAL configured, the default-pdwebpi ACL is configured so that it also grants
Proxy permission to members of the webseal-servers and webseal-mpa-servers
groups.

You may choose your own groups and ACLs used to control identification of
principals as Multiplexing Proxy Agents.

See the IBM Security Access Manager for Web: Base Administration Guide and the IBM
Security Access Manager for Web: Web Portal Manager Administration Guide for
information on managing groups.

Extended CDAS User Mapping Rules

The cross-domain-authentication-server (CDAS) is used to authenticate a user and
provide a Security Access Manager user identity. The latest client certificate
user-mapping CDAS functionality in Security Access Manager gives you more
flexibility when mapping attributes contained within the certificate to the Security
Access Manager user identity.

The rules which govern the mapping of the client certificate are defined using XSL
style notation, while XML is used for the data that forms an input to the rules. The
Universal Management Infrastructure XML document model (or UMI XML model)
defines the restrictions placed on the XSL/XML model, making the interface simple
and yet functional for certificate purposes. The output from the XML and XSL
input is a single string, which is used to determine the Security Access Manager
user identity.

For full details of the extended CDAS User Mapping functionality, including valid
string formats and configuration instructions, see the section titled Client Certificate
User Mapping in the IBM Security Access Manager: WebSEAL Administration Guide.

Note: For the IBM Security Access Manager Plug-in for Web Servers, only the
following subset of IBM Global Security Kit (GSKit) attributes can be specified in
the certificate XML:
* cert_dn_printable
* cert_issuer_dn_printable
* cert_serial_number

For more information about GSKit, see the IBM Secure Sockets Layer Introduction and
iKeyman User's Guide.

114 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 4. Managing session state

IBM Security Access Manager Plug-in for Web Servers uses session state
information to identify the source of incoming requests. It uses the identity of the
request source to maintain session state between client and server when the client
performs numerous requests within one session.

Without an established session state between client and server, the communication
between the client and the server must be renegotiated for each subsequent
request. Session state information improves performance by eliminating the need
for repeated authentication. The client can log on once and make numerous
requests without performing a separate log on for each request.

The plug-in supports a variety of methods for maintaining session state with a
client. For environments where there is more than one plug-in or WebSEAL
protecting access to resources, a separate application is available in the Security
Access Manager product suite called the IBM Security Access Manager session
management server (SMS).

The SMS is an enterprise application that runs as a WebSphere Application Server
service. The SMS manages sessions across clustered Web servers and allows for
login tracking and single sign-on. The SMS permits an administrator to monitor
and administer user sessions as required.

The SMS requires a separate installation and configuration and has associated
deployment considerations that you should become familiar with before installing
the product. The IBM Security Access Manager: Shared Session Management
Administration Guide contains a discussion of SMS deployment considerations and
provides configuration and administration information. Details on SMS installation
can be found in the IBM Security Access Manager for Web: Installation Guide.

Configuration of the SMS is also required at the client - either the plug-in or
WebSEAL, or both depending on your architecture. Details on configuring the
plug-in to use the SMS are located in the first part of this chapter. Equivalent
WebSEAL configuration information is included in the IBM Security Access
Manager: WebSEAL Administration Guide.

For environments where there exists only one plug-in enabled Web server
protecting your Web resources, the SMS will not provide any advantage and one of
the following information types should be configured for managing session state:
v SSL session ID
v Basic Authentication
v Server-specific session cookie
v HTTP header data
v IP address
v LTPA cookies
v IV headers

Details on configuring the plug-in to use the above information types for session
management can be found in “Managing Session State in non-clustered
environments” on page 121.

© Copyright IBM Corp. 2000, 2012 115

Session management can be configured for individual virtual hosts. So it is
possible that within one environment, some virtual hosts may use the SMS while
others may use any of the information types in the above list.

This chapter includes the following topics:
v “The Session Management Server (SMS)”
v “Managing Session State in non-clustered environments” on page 121

The Session Management Server (SMS)

The IBM Security Access Manager session management server (SMS) uses a single
session ID across replicated servers to represent the user's session. Collections of
replicated servers are known as replica sets. Replica sets may be grouped to form a
session realm. The SMS can maintain sessions across replica sets within a session
realm. A session realm may consist of replica sets of any kind; for example, plug-in
replica sets, WebSEAL replica sets, or a combination of both.

The diagram below illustrates how replica sets and virtual hosts coexist in such a
deployment.

When a request for a session is received at a server, that server queries the SMS for
any session information it may have. If the SMS has the information, the session is
reconstructed at the server; otherwise, the request is treated as unauthenticated.

WebSEAL

WebSphere Application Server

Replica Sets Replica Sets

Session Realm

Plug-in for

Web Servers

SSO

WebSEAL

Replica Sets Replica Sets

Session Realm

Plug-in for

Web Servers

SSO

Figure 6. Example deployment of replica sets

116 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The diagram above shows a basic representation of the SMS and its associated
session flows. The following processes occur in the example:
1. A user's request for a protected resource is intercepted by the plug-in. The

plug-in challenges the user to authenticate.
2. The user's credentials are passed to Security Access Manager to authorize the

request. Successful requests are returned to the plug-in. The plug-in creates a
user session and associates it with the user's credential and stores it in the local
session cache to promote performance.

3. The SMS is notified of the new session and associated credential.
4. The plug-in sends a session cookie to the user's browser.
5. The user accesses a new server in the replica set using the session cookie. This

server may contain a new part of the same application or may be a copy of the
original server that the user has been directed to for reasons of failover or load
balancing.

6. Using the session cookie, server 2 consults the SMS to determine whether the
user has already authenticated. The SMS replies with the user's cached
credential which the server uses to trust the client.

After the initial logon, the processes in the above example all occur without the
need for user intervention. In certain architectures, participating servers in a replica
set might require a stronger level of authentication than the user originally logged
in with. In such cases the user is prompted to re-authenticate to the higher level.
This process is known as step-up and is described more fully in
“Authentication-strength Protected Object Policy (Step-up)” on page 136.

If the example architecture in figure 5 did not use the SMS, then the re-direction to
server 2 would require the user to re-authenticate. This is because, without the
SMS, server 2 has no record of the user's original credentials.

Configuring the plug-in to use the SMS

To use the SMS, the plug-in distributed session module, dsess, needs to be
configured as a session module. The dsess module uses cookies to maintain
session state information and it uses the SMS to distribute the session information
throughout the participating servers in the session realm.

Replica
set

Web Server 1 Session
Management

Server

SD

WebSphere
Application
Server

Security Access
Manager

Client Browser Web Portal
Manager session

administration

1

2

3

4

5 6

plug-in

plug-in

Web Server 2

Figure 7. Basic session flow using the SMS

Chapter 4. Managing session state 117

In the plug-in configuration file, add the following entry to the [common-modules]
stanza:
session = dsess

The library name for the dsess module is configured by default in the [modules]
stanza.

When configuring the plug-in to use the SMS, the dsess module is the only session
module required. However, different virtual hosts can use different mechanisms for
maintaining session state. When such a facility is required, the [common-modules]
stanza should be configured for specific virtual hosts. For details on configuring
for virtual hosts refer to, “Configuring authentication for virtual hosts” on page 51.

Configuration entries for the dsess module are located within the dsess stanza of
the configuration file. First, you need to point the plug-in at the SMS. Within the
dsess stanza, define a cluster name in the dsess-cluster-name entry. For example:
dsess-cluster-name = cluster1

You then need to define details for that cluster. This can be done in either the
default [dsess-cluster] stanza, or in a qualified cluster stanza with an appropriate
name (for example, using the dsess-cluster-name entry above,
[dsess-cluster:cluster1]). If specific details for a cluster are not found in a
qualified [dsess-cluster:cluster_name] stanza, then default details from the
[dsess-cluster] stanza will be used.

For architectures where more than one SMS is installed in a failover configuration,
multiple instances of this configuration entry should be created.

Uniquely identify each plug-in instance within a replica set using a unique name
configured in the dsess-replica-name entry. For example:
dsess-replica-name = human_res_serv_3

If this entry is not set, the plug-in instance is identified to the SMS using its
authorization server name.

Identify the replica set within which the plug-in functions using the
dsess-replica-set entry. For example:
dsess-replica-set = human_res_replica_set

If this entry is not set, the value defaults to the name of the virtual host. The
default value for this configuration entry should be correct for the majority of
environments.

Replica set configuration entries also need to be set during SMS configuration.

Configuring secure communication between the plug-in and SMS

Communication between the plug-in and SMS can be configured over SSL using
the Security Access Manager server certificate. Other certificates can be used
however the Security Access Manager server certificate is the default and easiest to
configure. Generally, any certificate considered valid by the host WebSphere
Application Server is acceptable as authentication.

When SSL is to be used for plug-in to SMS communications (that is, the URL
configured in the server entry of the [dsess-cluster] stanza begins with HTTPS)
the following configuration entries are required. These entries are also required

118 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

when a certificate other than the one used by the server is needed for
communication with the policy database. Details of the default certificate can be
found in the [ssl] stanza.

Use the ssl-keyfile configuration entry to specify the absolute path name of the
key database file which houses the client certificate. For example:
ssl-keyfile = /var/pdwebpi/www/certs/sms.kdb

Using the ssl-keyfile-stash entry, specify the name of the password stash file for
the key database file. For example:
ssl-keyfile-stash = /var/pdwebpi/www/certs/sms.sth

Using the ssl-keyfile-label entry, specify the label of the client certificate within
the key database.
ssl-keyfile-label = Plug-in-SMS

In rare situations you may need your session cookies to operate across both HTTP
and HTTPS connections. Having session cookies travel across insecure network
connections is not advisable as a nefarious agent may be able to steal a session
cookie and assume the identity of a valid user. However, the dsess-use-same-
session entry is available for customers requiring such a function. Set this entry to
yes if you require your session cookies to operate across both HTTP and HTTPS.

The dsess-propagate-unauth entry enables or disables the distribution of
unauthenticated sessions across multiple servers. Storing a record of the
unauthenticated session at the SMS by setting this entry to true means the
unauthenticated session information is available to all replicated plug-in instances.
Doing this can leave the SMS open to denial-of-service attacks. The SMS is a vital
component of the architecture and denial of service attacks at this level will
potentially have far greater consequences than at the level of the plug-in.

The session cookie the SMS uses to maintain session state across the replica set can
be used across the entire domain by enabling the cookie-for-domain entry. This
effectively enables the SMS for session tracking across a DNS domain.
cookie-for-domain = true

When using SSL for communications between the plug-in and the SMS a certificate
is exchanged. The ssl-valid-server-dn entry allows you to specify a list of trusted
server distinguished names. The list is formed using the domain names of these
root certification authorities. The plug-in will only accept from the SMS certificates
signed by the listed root CA domain names. If this entry is not specified then all
root CA certificates are considered valid. An example entry might be:
ssl-valid-server-dn = cn=sms,o=company,c=us
ssl-valid-server-dn = cn=sms,o=other_company,c=us

Configuring the SMS communication timeout

The timeout configuration entry in the [dsess-cluster] stanza defines the amount of
time the plug-in should wait for a response from the SMS. The default value is 30
seconds but this can be increased or decreased. After this limit is reached, the SMS
is marked as unavailable (and remains that way until communication can be
reestablished). For example:
timeout = 60

Chapter 4. Managing session state 119

In architectures where a firewall is used between the plug-in protected Web server
and the WebSphere installation running the SMS, communication channels which
are waiting for broadcast events may be shut down by the firewall.

The response-by configuration entry in the [dsess-cluster] stanza is used to specify
maximum length of time that the SMS will wait for a response while maintaining
the connection that broadcasts information updates to the client. This configuration
entry should be set to a value which is less than the maximum amount of time
that a connection can remain idle before it is terminated by a firewall.

For example:
response-by = 30

Configuring SMS performance

The dsess-sess-id-pool-size property in the [dsess] stanza defines the number of
inactive session ids that have been created in a pool for use at a later date. Such a
pool of ready-to-go session ids can aid performance when multiple new users are
required in a hurry. The default value is 512 and should only be adjusted when
you are certain of the implications.

At plug-in startup, a certain number of communication handles are created and
cached for anticipated exchanges with the SMS. The handle-pool-size
configuration parameter in the [dsess-cluster] stanza sets this number of handles.
The default setting is 10 and will be adequate for most installations. The entry can
be adjusted if communication between the plug-in and the SMS is causing
problems. If you do change this property, do not set it too high as doing so might
have implications for other server communications that also require handles.

Configuring session displacement

The SMS can be configured to limit a user to one active session in the system at
one time. Two types of session displacement are available: interactive and
non-interactive. With interactive session displacement, the user is prompted to
either terminate their existing session or terminate the current login attempt when
the SMS discovers another valid session exists for the user.

Interactive session displacement is useful when a user session remains active yet
the user can no longer access it, for example in the case when the user's browser
fails and they want to continue with their session. This facility is also useful for
alerting users that they have another session active on another browser.

Non-interactive session displacement will terminate any existing session when a
user logs in again. This is useful in situations when a user logs on using one
browser and then leaves the session active and moves onto another browser. The
original session is terminated when the user logs back in.

The following pdadmin command is used to set session displacement policy for a
user (whether interactive or non-interactive):
policy set max-concurrent-web-sessions displace [-user user-name]

The dsess-displacement-form entry determines whether session displacement is
interactive or non-interactive. When this entry is left out, or left blank, session
displacement is non-interactive. When interactive session displacement is enabled,

120 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

a user logging on for a second time is advised that they already have an existing
session. The page displayed to the user is also determined by the
dsess-displacement-form entry. That is:
dsess-displacement-form = session_displacement.html

This defaults to session_displacement.html, located by default on the directory
install_path/nls/html/lang/encoding/. This file is provided as a base from which
you can format your own page. A new page can be created and placed on this
directory or it can be stored in a new location by providing the full URI within the
configuration entry. The HTML page can contain macros. See “Macro support” on
page 9 for information on plug-in supported macros.

When the form configured in the dsess-displacement-form property is posted, the
details are sent to the URI configured using the dsess-displacement-uri. For
example (default):
dsess-displacement-uri = /dsess-displacement.form

Changing session identifiers

The name of the cookie used to identify SMS sessions is configurable. Having
configurable session identifiers also permits different virtual hosts within the same
domain to participate in different SMS session realms. Configuring different
session identifiers for each virtual host avoids name conflicts that would otherwise
render participation by two separate virtual hosts impossible.

SMS session identifiers are configured using the http-cookie-name and
https-cookie-name configuration entries in the [dsess] stanza of the plug-in
configuration file. http-cookie-name specifies the name of sessions established over
HTTP. https-cookie-name specifies the name of sessions established over HTTPS.

Managing Session State in non-clustered environments

In architectures using a single plug-in, using the SMS to manage sessions will
provide no advantage. Instead, one, or a combination of the plug-in session
modules should be configured for managing sessions.

The plug-in calls each configured session module in turn and continues to search
the configured session module types until one returns a credential. The plug-in
then determines if the application references a Multiplexing Proxy Agent. If it is a
Proxy Agent, then another session must exist for the real end user.

To find this other session, the plug-in continues to call the rest of the configured
session modules. A user credential is returned when an existing session is found
for which user authentication has already taken place. This credential is used to
authorize the request. If none of the configured session modules returns a user
credential, the session is either new or is a session for which no credential has been
established.

Configuring the plug-in session/credentials cache

The plug-in session cache allows a server to store the session ID information from
multiple clients. The session cache accommodates both HTTPS and HTTP session
state information.

Chapter 4. Managing session state 121

The plug–in cache stores session ID information plus the credential information
obtained for each client. Credential information is cached to eliminate repetitive
queries to the user registry database during authorization checks. The plug-in
cache also maintains session state information for SSL connections between the
plug-in and the LDAP user registry.

There are several configuration parameters available for the plug-in cache that
allow you to tune the performance of the cache.

Note: The values configured in the [sessions] stanza of the pdwebpi.conf
configuration file may be overridden in the [module_name] stanza, and some may
be further overridden in the [module_name:virtual_host_name] stanza on a
per-virtual host basis.

Setting the maximum concurrent entries value

The max-entries parameter, located in the [sessions] stanza of the pdwebpi.conf
configuration file, sets the maximum number of concurrent entries in each session
module's session/credentials cache.

This value corresponds to the number of concurrent logon sessions for a particular
session module. When the cache size reaches this value, entries are removed from
the cache according to a least recently used algorithm to allow new incoming
logons.

The default number of concurrent logon sessions is 4096:
[sessions]
max-entries = 4096

Setting the cache entry timeout value

The timeout parameter, located in the [sessions] stanza of the pdwebpi.conf
configuration file, sets the maximum lifetime timeout for an entry in the plug-in
session/credentials cache.

The plug-in caches credential information internally. The session cache timeout
parameter dictates the length of time authorization credential information remains
in memory.

The parameter is not an inactivity timeout. The value maps to a "credential
lifetime" rather than a "credential timeout". Its purpose is to enhance security by
forcing the user to re-authenticate when the specified timeout limit is reached.

The default logon session timeout (in seconds) is 3600:
[sessions]
timeout = 3600

Note: If specified, the EAI session lifetime setting defined in the
am_eai_xattr_session_lifetime header will override this setting. For details, see
“Using an external authentication service” on page 102.

You can configure the session cache lifetime to be reset whenever re-authentication
occurs. Each time re-authentication occurs, the session cache timeout value is reset.
To configure session cache lifetime reset, use the reauth-lifetime-reset parameter in
the [sessions] stanza of the pdwebpi.conf configuration file:

122 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

[sessions]
reauth-lifetime-reset = yes

The default value is no.

It is possible for the session cache lifetime value to expire while the user is
performing a re-authentication. The session cache lifetime can expire after the
re-authentication logon form is sent to the user and before the completed logon
form is returned.

When the session cache lifetime value expires, the session cache entry is deleted.
When the logon form is returned to the plug-in, there is no longer a session for
that user. In addition, all cached user request data is lost. You can configure a time
extension, or grace period, for the session cache lifetime if the session cache
lifetime expire during re-authentication.

The reauth-grace-period parameter in the [sessions] stanza of the pdwebpi.conf
configuration file provides this time extension, in seconds. For example:
[reauthentication]
reauth-grace-period = 20

The default value, 0, provides no extension to the session cache timeout value. The
reauth-grace-period parameter applies to users with existing session cache entries
and who are required to reauthenticate. For example, users might perform:
v Reauthentication resulting from POP security policy
v Reauthentication resulting from session cache inactivity
v Step-up authentication

The reauth-grace-period option is intended to be used in conjunction with the
reauth-lifetime-reset = yes option.

Setting the cache entry inactivity timeout value

The inactive-timeout parameter, located in the [sessions] stanza of the
pdwebpi.conf configuration file, sets the timeout value for logon session inactivity.

The default logon session inactivity timeout (in seconds) is 600:
[sessions]
inactive-timeout = 600

To disable this timeout feature, set the parameter value to 0.

Changing cookie names

By default session cookies are given a name that uniquely identifies them within
your domain. The plug-in provides the ability to change this default identifier.

Session cookie names are configured using the http-cookie-name and
https-cookie-name configuration entries in the [session-cookie] stanza of the
plug-in configuration file. The http-cookie-name entry specifies the name of
sessions established over HTTP. The https-cookie-name entry specifies the name of
sessions established over HTTPS.

Chapter 4. Managing session state 123

Maintaining session state with the SSL session ID

Security Access Manager Plug-in for Web Servers can track sessions using the SSL
session ID of incoming HTTPS requests. This facility is not available on IIS, as IIS
does not make SSL session IDs available to the plug-in.

Note: SSL session IDs are not used for authenticating requests.

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all session, authentication, and post-authorization methods using the format
module_type = module-name. To maintain session state using SSL session IDs, assign
the word ssl-id to the session parameter as in the following:
[common-modules]
session = ssl-id

Ensure the shared library for ssl-id is configured in the [modules] stanza of the
pdwebpi.conf configuration file. That is:
[modules]
ssl-id = pdwpi-sslsessid-module

Maintaining session state using Basic Authentication

Basic Authentication (BA) is a method for authenticating users and maintaining
session state through the input of a username and password. BA is defined by the
HTTP protocol and can be implemented over HTTP and HTTPS.

Basic Authentication maintains session state by caching a record of the content of
the Basic Authentication header.

To configure the plug-in to maintain session state using Basic Authentication, use
the [common-modules] stanza in the pdwebpi.conf configuration file. Enter the
parameter session with the value as BA, as in the following:
[common-modules]
session = BA

If BA is used to maintain session state, it needs to be also used for user
authentication. The [common modules] stanza of the configuration file should also
set to BA for authentication.
[common-modules]
session = BA
authentication = BA

Security Warning:
Using the Basic Authentication authorization header to identify sessions can expose
users of the Web server to unlimited password guessing attacks.

This is a limitation of the HTTP Basic Authentication scheme that includes the
user's password in the authorization header.

IBM Security Access Manager Plug-in for Web Servers is not enabled by default.
The Basic Authentication session identification capability is provided for those
Administrators aware of all the security risks associated with Basic Authentication
including this one.

124 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Basic Authentication session identification can be securely used when a plug-in
secured Web server operates behind a multiplexing proxy agent (for example
behind a WebSEAL junction) using Basic Authentication to authenticate itself to the
plug-in. In such a situation, the multiplexing proxy agent does not forward Basic
Authentication authorization headers from users to the plug-in, making the attack
impossible.

Maintaining session state with Session Cookies

Using session cookies to hold session information is a method for maintaining
plug-in session state. The server packages the state information for a particular
client in a cookie and sends it to the client's browser. For each new request, the
browser re-identifies itself by sending the cookie (with the session identifier) back
to the server.

Session cookies offer a possible solution for situations when the client uses a
browser that renegotiates its SSL session after very short periods of time. For
example, some versions of the Microsoft Internet Explorer browser renegotiate SSL
sessions every two or three minutes.

A session cookie provides re-authentication of a client only to the server the client
authenticated to within a short time period (around ten minutes). The mechanism
is based on a "server cookie" that cannot be passed to any machine other than the
one that generated the cookie.

In addition, the session cookie contains a random number identifier that is used to
index the cookie in the server's session cache — no other information is exposed in
the session cookie. The session cookie cannot compromise security policy.

IBM Security Access Manager Plug-in for Web Servers uses a secure server-specific
session cookie. The following conditions apply to this cookie mechanism:
v Cookie contains session information only; it does not contain identity

information.
v Cookie is located only in the browser memory (it is not written to the browser

cookie jar on the disk).
v Cookie has a limited lifetime (configurable).
v Cookie has path and domain parameters that prohibit its use by other servers.

To configure the plug-in to use session cookies to maintain session state, use the
[common-modules] stanza in the pdwebpi.conf configuration file. Enter the
parameter session with the value as session-cookie, as in the following:
[common-modules]
session = session-cookie

The resend-pdwebpi-cookies parameter, located in the [sessions] stanza of the
pdwebpi.conf configuration file, enables or disables the sending of the session
cookie to the browser with every response. This action helps to ensure that the
session cookie remains in the browser memory. The resend-pdwebpi-cookies
parameter has a default setting of no:
[sessions]
resend-pdwebpi-cookies = no

Change the default setting to yes to send plug-in session cookies with every
response.

Chapter 4. Managing session state 125

Maintaining session state using HTTP headers

IBM Security Access Manager Plug-in for Web Servers can be configured to use
HTTP header information to identify sessions and maintain session state.

The plug-in can use HTTP headers for tracking sessions as well as authenticating
users. Refer to, “Configuring HTTP header authentication” on page 97 for details
on configuring the plug-in to use HTTP headers for client authentication. The
HTTP header will only be used if it comes from a trusted MPA, as described in
“Supporting Multiplexing Proxy Agents (MPA)” on page 110.

When using HTTP headers to maintain session state, the [common-modules]
stanza of the pdwebpi.conf configuration file must be configured with the
following values:
[common-modules]
session = http-hdr

A standard configuration of HTTP headers permits only one header to be specified,
for example:
[modules]
http-hdr = pdwpi-httphdr-module

To specify multiple HTTP headers, multiple instances of the HTTP header module
must be configured.

For example:
[modules]
entrust-client-header = pdwpi-httphdr-module
some-other-header= pdwpi-httphdr-module

[entrust-client-header]
header = entrust-client

[some-other-header]
header = some-other

Maintaining session state using IP addresses

IBM Security Access Manager Plug-in for Web Servers can use IP addresses to
identify and track sessions.

To configure the plug-in to use IP addresses to track sessions, use the
[common-modules] stanza in the pdwebpi.conf. Enter the parameter session with
the value as ip-addr. That is:
[common-modules]
session = ip-addr

Ensure the shared library for IP address authentication is configured in the
[modules] stanza of the pdwebpi.conf configuration file. That is:
[modules]
ip-addr = pdwpi-ipaddr-module

If IP addresses are used to maintain session state they must also be used to
authenticate incoming requests. See “Configuring IP address authentication” on
page 98 for details on configuring IBM Security Access Manager Plug-in for Web

126 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Servers to use the IP address as the method for client authentication. The usage of
IP addresses for authenticating clients, however, does not require them to be used
as the method for identifying sessions.

Maintaining session state using LTPA cookies

LTPA authentication can be used to accept and authenticate based on an LTPA
cookie. LTPA Authentication can maintain session state using the LTPA cookie
found within each HTTP request.

To configure the plug-in to maintain session state using LTPA Authentication, use
the [common-modules] stanza in the pdwebpi.conf configuration file. Enter the
parameter session with the value as ltpa, as in the following:
[common-modules]
session = ltpa

If LTPA is used to maintain session state, it also needs to be configured for user
authentication. The [common-modules] stanza of the configuration file also should
set to LTPA for authentication.
[common-modules]
authentication = ltpa
session = ltpa

Maintaining session state using iv-headers

IBM Security Access Manager Plug-in for Web Servers can cache iv-header
information to improve system performance.

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all session, authentication, and post-authorization methods using the format
module_type = module-name. To cache iv-headers information, assign the value
iv-headers to the session parameter as in the following:
[common-modules]
session = iv-headers

Ensure the shared library for iv-headers is configured in the [modules] stanza of
the pdwebpi.conf configuration file. That is:
[modules]
iv-headers = pdwpi-iv-headers-module

Chapter 4. Managing session state 127

128 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 5. Security policy

This chapter contains information that describes how you can configure and
customize IBM Security Access Manager (Security Access Manager) Plug-in for
Web Servers security policy.

This chapter includes the following topics:
v “Plug-in-specific Access Control List (ACL) policies”
v “Setting a logon failure policy” on page 132
v “Password strength policy” on page 134
v “Authentication-strength Protected Object Policy (Step-up)” on page 136
v “Multi-factor authentication” on page 139
v “Reauthentication Protected Object Policy” on page 140
v “Network-based authentication Protected Object Policy” on page 142
v “Quality-of-protection Protected Object Policy” on page 144
v “Handling unauthenticated users (HTTP/HTTPS)” on page 144
v “Policy for unprotected resources” on page 145

Plug-in-specific Access Control List (ACL) policies

The following security considerations apply for the /PDWebPI container in the
protected object space:
v The IBM Security Access Manager Plug-in for Web Servers object begins the

chain of ACL inheritance for the plug-in region of the object space.
v If you do not apply any other explicit ACLs, this object defines (through

inheritance) the security policy for the entire Web space.
v The traverse permission is required for access to this object and any object below

this point.

See the IBM Security Access Manager for Web: Base Administration Guide for complete
information about Security Access Manager ACL policies.

Note: The Microsoft IIS Web server provides the ability to specify a default Web
page within a directory that is displayed when a user request contains a URL that
includes only the directory path.

The ACL check performed by the Plug-in for Web Servers only applies to the
directory specified in the request URL and not the default Web page served by the
IIS server in response to this request.

You should incorporate this ACL check limitation when implementing your
security policy on IIS platforms.

Similarly, due to the nature of the Web Server plug-in architecture, there is nothing
stopping you from installing other modules which conflict with the security
provided by the plug-in. It is the responsibility of the Web server administrator to
ensure that no modules are installed onto the Web server that conflict with the
plug-in.

© Copyright IBM Corp. 2000, 2012 129

For example the "MultiViews" functionality within Apache and IHS Web servers
attempts to dynamically determine the extension of the requested URL. For
example, if a request is made to www.ibm.com/index then the Web server would
dynamically map this to www.ibm.com/index.html if such a file existed.

Unfortunately, this mapping occurs after authorization has taken place, which
means the authorization check is performed on index rather than index.html.

In such situations, disable the "MultiViews" option or set up the policy to capture
this mapping. For example, an ACL could be attached to /PDWebPI/www.ibm.com, or
if greater granularity was required, the ACL could be attached to both
/PDWebPI/www.ibm.com/index and /PDWebPI/www.ibm.com/index.html.

/PDWebPI/host or virtual_host

The /PDWebPI/host or virtual_host subtree contains the object space of a
particular plug-in instance. The following security considerations apply for this
object:
v The traverse permission is required for access to any object below this point.
v If you do not apply any other explicit ACLs, this object defines (through

inheritance) the security policy for the entire object space on this machine.

Plug-in ACL permissions

The following table describes the ACL permissions applicable for the IBM Security
Access Manager Plug-in for Web Servers region of the object space:

Table 21. Plug-in ACL permissions

Permission Operation Description

[PDWebPI]R read View any element other than a directory. Any
HTTP GET or POST request requires this
permission. There is no specific "list" permission
for requesting a directory listing (A GET of a URL
ending in /).

[PDWebPI]d delete Remove the Web object from the Web space. HTTP
DELETE commands require this permission.

[PDWebPI]M modify Place/publish a HTTP object in the plug-in object
space. A HTTP PUT request requires this
permission.

[PDWebPI]p proxy Determines whether a user can act as a
Multiplexing Proxy agent. See “Add the MPA
account to the pdwebpi-mpa-servers group” on
page 113 for more details.

T traverse Required for access to any object below this point.

The plug-in also supports WebDAV operations as shown below.

Table 22. Plug-in WebDAV permissions

Task Permission Required

PROPFIND [PDWebPI]R

PROPPATCH [PDWebPI]M

MKCOL [PDWebPI]N

130 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

WebDAV operations are authorized based on the request URI – not on individual
members of a collection. In addition, some other WebDAV operations are partially
supported:
v COPY - Requires [PDWebPI]R on the collection so that the 'copy from' can be

read. Permissions for the destination are not checked.
v MOVE - This is considered a copy then a delete. Requires [PDWebPI]Rd on the

collection that you are moving from. Permissions for the destination are not
checked.

Default /PDWebPI ACL policy

Core entries for the IBM Security Access Manager Plug-in for Web Servers ACL,
default-pdwebpi, include:

Table 23. Core entries for default-pdwebpi

Group iv-admin TcmdbsvaBR[PDWebPI]rR

User sec_master cmdbsvaBR[PDWebPI]rR

Any-other T[PDWebPI]rR

Unauthenticated T

Group pdwebpi-mpa-servers TBR[PDWebPI]p

Group webseal-servers TBR[PDWebPI]p

Group webseal-mpa-servers TBR[PDWebPI]p

At installation, this default ACL is attached to the /PDWebPI container object in the
object space.

The traverse permission allows expansion of the Web space as represented in the
Web Portal Manager. The list permission allows the Web Portal Manager to display
the contents of the Web space.

Changing The Mapping of HTTP Request Methods

You can change the mapping of HTTP request methods to permission strings by
changing the values specified in the [http-method-perms] stanza of the
configuration file. For example, to define that an HTTP method PUSH should map
to the permission string [PDWebPI]w, add the following entry to the
[http-method-perms] stanza:
PUSH = [PDWebPI]w

For more information, see “[http-method-perms]” on page 253.

Note: The configuration specified in the [http-method-perms] stanza is validated
each time the authorization server starts. This ensures that the permission strings
specified correspond to actions already defined in the policy database.

The validation process may result in authorization audit events being generated.
Such audit events will appear as unauthenticated accesses to the Security Access
Manager policy object /Permission-Configuration.

Chapter 5. Security policy 131

If you wish to suppress these audit events, attach a protected object policy (POP)
with its audit-level attribute set to none to an object with the name
/Permission-Configuration (this object is not created in the object space by
default). The following pdadmin commands illustrate the creation of policy that
will suppress the generation of these audit events:
pdadmin> objectspace create /Permission-Configuration
"Permission configuration validation" 0
pdadmin> pop create permission-configuration
pdadmin> pop modify permission-configuration set audit-level none
pdadmin> pop attach /Permission-Configuration permission-configuration

Setting a logon failure policy
This section describes various settings which allow you to enforce a policy to
control repeated login failures. Such a logon policy can help prevent random
computer-generated logon attempts, which may occur many times a second.

The logon failure policy, available for LDAP-based Security Access Manager
installations, enables you to prevent computer password attacks by specifying:
v A maximum number of failed log on attempts
v A penalty lockout time (how long a user must wait before making further log on

attempts)
v Whether an error page is displayed to the user immediately following the

maximum number of failed login attempts, or at the following login attempt
v Whether the user's account is disabled for the penalty lockout time only, or

whether an administrator reset is required

These settings are designed to provide maximum flexibility in setting a policy that
suits your corporate needs. For example, a policy could dictate three failed
attempts, followed by a 180 second penalty. An error page could be displayed to
the user immediately after their third failed attempt, or else a subsequent attempt
(correct or incorrect) could result in the error page being displayed.

The user could be allowed to log in again after the specified penalty period has
expired, or else an administrator could be required to reset the user's account
before they can successfully log in again.

The standard logon failure policy (sometimes called the "three strikes policy",
although the set limit need not be three) requires the joint contribution of two
pdadmin policy command settings:
v Maximum number of failed log on attempts

policy set max-login-failures

v Penalty for exceeding failed log on attempt setting
policy set disable-time-interval
The penalty setting can include an account lockout time interval or a complete
disabling of the account. The time interval is specified in seconds (the typical
minimum time interval is 60 seconds).

If the disable-time-interval policy is set to disable, the user is locked out of the
account and the LDAP account valid attribute for this user is set to no. An
administrator re-enables the account through the Web Portal Manager.

The Web Plug-in returns a server response error page (acct_locked.html) that
notifies the user of the penalty. The late-lockout-notification stanza entry in the
[pdweb-plugins] stanza of the plug-in configuration file specifies whether this

132 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

notification occurs when the user reaches the max-login-failures limit, or at the
next login attempt after reaching that limit.

For new installations of the Web Plug-in, the default late-lockout-notification
setting is no. Upon reaching the maximum value set by the max-login-failures
policy, the plug-in immediately sends the account disabled error page to the user.
For example:
[pdweb-plugins]
late-lockout-notification = no

For migrated (upgraded) installations of the Web Plug-in, the default
late-lockout-notification setting is yes. Upon reaching the maximum value set by
the max-login-failures policy, the plug-in returns another login prompt to the user.
The plug-in does not send the account disabled error page to the user until the
next login attempt (this represents the pre-version 6.0 behavior for the
max-login-failures policy. For example:
[pdweb-plugins]
late-lockout-notification = yes

Finally, a terminate-on-reath-lockout setting in the [pdweb-plugins] stanza
controls whether or not user sessions are terminated after the max-login-failures
limit has been reached. This setting is enabled by default. For example:
[pdweb-plugins]
terminate-on-reath-lockout = yes

The terminate-on-reath-lockout setting can be overridden on a per-virtual host
basis by specifying it in the [virtual-host-name] stanza.

Note:

1. Setting the disable-time-interval to disable results in additional administration
overhead. You might observe delays in replicating account valid information to
the plug-in.
This situation depends on your LDAP environment. In addition, certain LDAP
implementations might experience performance degradation as a result of the
account valid update operation. For these reasons it is typical to use a timeout
interval.

2. When multiple plug-in servers are used in a load-balancing architecture, the
results of the policy are affected by the fact that each plug-in maintains its own
local count of failed login attempts. For example, if the max-login-failures
value is set to three (3) attempts, and the client fails the first three attempts, the
account on this server is locked.
However, as the client continues login attempts, the load-balancing mechanism
detecting a failure to connect to the first server redirects the request to another
server. Now the client has three more opportunities to attempt a successful
login. If your business security solution requires a three strikes login policy,
understand the implications of setting this policy in load-balanced architectures.

3. The following pdadmin commands are appropriate only for use with an LDAP
registry.

Table 24. pdadmin LDAP logon policy commands

Command Description

policy set max-login-failures {number|unset} [-user username]

policy get max-login-failures [-user username]

Chapter 5. Security policy 133

Table 24. pdadmin LDAP logon policy commands (continued)

Command Description

Manages the policy controlling the maximum
number of failed log on attempts allowed before a
penalty is imposed. This command depends on a
penalty set in the policy set disable-time-interval
command.

As the administrator, you can apply this policy to a
specific user or apply the policy globally to all users
listed in the LDAP registry.

The default setting is 10 attempts.

policy set disable-time-interval {number|unset|disable} [-user username]

policy get disable-time-interval [-user username]

Manages the penalty policy controlling the time
period an account should be disabled if the
maximum number of failed log on attempts is
reached.

As the administrator, you can apply this penalty
policy to a specific user or apply the policy globally
to all users listed in the LDAP registry.

The default setting is 180 seconds.

Password strength policy

A Security Access Manager LDAP-based installation provides two means of
controlling the construction of passwords:
v Five pdadmin password policy commands
v A pluggable authentication module (PAM) that allows you to customize a

password policy
See theIBM Security Access Manager for Web: Authorization C API Developer's
Reference.

Password strength policy set by the pdadmin utility

The five password strength attributes implemented through the pdadmin utility
include:
v Minimum password length
v Minimum alphabetic characters
v Minimum non-alphabetic characters
v Maximum repeated characters
v Spaces allowed

These policies are enforced when you create a user with pdadmin or the Web
Portal Manager, and when a password is changed with pdadmin, the Web Portal
Manager, or the pkmspasswd utility.

The following pdadmin commands are appropriate for use only with an LDAP
registry. The unset option disables this policy attribute – that is, the policy is not
enforced.

134 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 25. pdadmin LDAP password strength commands

Command Description

policy set min-password-length {number|unset} [-user username]

policy get min-password-length [-user username]

Manages the policy controlling the minimum length
of a password.

As the administrator, you can apply this policy to a
specific user or apply the policy globally to all users
listed in the default registry.

The default setting is 8.

policy set min-password-alphas {number|unset} [-user username]

policy get min-password-alphas [-user username]

Manages the policy controlling the minimum number
of alphabetic characters allowed in a password.

As the administrator, you can apply this penalty
policy to a specific user or apply the policy globally
to all users listed in the default registry.

The default setting is 4.

policy set min-password-non-alphas {number|unset} [-user username]

policy get min-password-non-alphas [-user username]

Manages the policy controlling minimum number of
non-alphabetic (numeric) characters allowed in a
password.

As the administrator, you can apply this policy to a
specific user or apply the policy globally to all users
listed in the default registry.

The default setting is 1.

policy set max-password-repeated-chars {number|unset} [-user username]

policy get max-password-repeated-chars [-user username]

Manages the policy controlling the maximum
number of repeated characters allowed in a
password.

As the administrator, you can apply this policy to a
specific user or apply the policy globally to all users
listed in the default registry.

The default setting is 2.

policy set password-spaces {yes|no|unset} [-user username]

policy get password-spaces [-user username]

Manages the policy controlling whether a password
can contain spaces.

As the administrator, you can apply this policy to a
specific user or apply the policy globally to all users
listed in the default registry.

The default setting is unset.

Chapter 5. Security policy 135

The following table illustrates several password examples and the policy results
based on the default values of the five pdadmin parameters:

Table 26. Password examples

Example Result

password Not valid: must contain at least one non-alphabetic
character.

pass Not valid: must contain at least 8 characters.

passs1234 Not valid: contains more than two repeated characters.

12345678 Not valid: must contain at least four alphabetic
characters.

password3 Valid.

Specific user and global settings

The pdadmin policy commands can be set for a specific user (with the -user
option) or globally (by not using the -user option). Any user-specific setting
overrides a global setting for the policy. You can also disable (unset) a policy
parameter, which means the parameter contains no value. Any policy with the
unset option is not checked or enforced.

For example:
pdadmin> policy set min-password-length 8

pdadmin> policy set min-password-length 4 -user matt

pdadmin> policy get min-password-length

Minimum password length: 8

pdadmin> policy get min-password-length -user matt

Minimum password length: 4

User matt has a minimum password length policy of 4 characters; all other users
have a minimum password length policy of 8.
pdadmin> policy set min-password-length unset -user matt

User matt is now governed by the global minimum password length policy of 8
characters.
pdadmin> policy set min-password-length unset

All users, including user matt, now have no minimum password length policy.

Authentication-strength Protected Object Policy (Step-up)

The authentication-strength Protected Object Policy (POP) makes it possible to
control access to objects based on the authentication method that they use.

You can use this functionality – sometimes known as step-up authentication – to
ensure that users accessing more sensitive resources use a stronger authentication
mechanism. You might want this condition because of the greater threat of
improper access.

136 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

For example, you can provide greater security to a region of the Web space by
applying a step-up POP policy that requires a stronger level of authentication than
the client used when initially entering the plug-in domain.

Step-up authentication can also be set for each specific virtual host on a Web
server, allowing individual virtual hosts to carry their own step-up levels of
authentication without being subject to server-wide policy implementations.

Authentication strength policy is set in the IP Endpoint Authentication Method
attribute of a POP policy.

Note: Step-up to client certificates is currently unsupported on IBM HTTP server,
version 8.0.

Configuring levels for step-up authentication

The first step in configuring authentication-specific access is to configure the
supported authentication methods and determine the order in which these
authentication methods should be considered stronger. See Chapter 3,
“Authentication and request processing,” on page 49 for details on configuring
authentication mechanisms.

Any client accessing a Web server through the plug-in has an authentication level,
such as "unauthenticated" or "password," which indicates the method by which the
client last authenticated through the plug-in.

In some situations it might be necessary to enforce minimum "safe" levels of
authentication required to access certain Web space objects. For example, in one
environment, authentication by token passcode might be considered more secure
than authentication by username and password. Another environment could have
different standards.

Rather than forcing clients to restart their sessions when they do not meet the
required level of authentication, the step-up authentication mechanism gives clients
a second chance to re-authenticate using the required method (level).

Step-up authentication means that users are not immediately shown a "denied"
message when they try to access a resource that requires a "higher" authentication
level than the one they logged on with. Instead, they are presented with a new
authentication prompt that requests information to support the higher
authentication level. If they are able to supply this level of authentication, then
their original request will be permitted.

You configure authentication levels in the [authentication-levels] or
[authentication-levels:virtual_host_label] stanza of the pdwebpi.conf configuration
file. For example:
[authentication-levels]
1 = BA
2 = iv-headers
3 = cert

Based on the order of the methods in the list, each method is assigned a level
index.
v Unauthenticated is assumed to have a level of 0.

Chapter 5. Security policy 137

v Subsequent methods can be placed in any order. See “Step-up authentication
notes and limitations” on page 139

v There must be at least two entries to enable step-up authentication.
v Levels for authentication mechanisms can be set for specific virtual hosts by

specifying the levels using a stanza with the form: [authentication-
levels:virtual_host_name].

Note: See Chapter 3, “Authentication and request processing,” on page 49 for
detailed information about setting up the required authentication mechanisms.

Enabling step-up authentication

Step-up authentication is implemented using a POP policy placed on the objects
requiring authentication sensitive authorization. You use the IP Endpoint
Authentication Method attribute of a POP policy.

The pdadmin pop modify set ipauth command specifies both the allowed
networks and the required authentication level in the IP Endpoint Authentication
Method attribute.

The configured authentication levels can be linked to IP address ranges. This
method is intended to provide management flexibility. If filtering users by IP
address is not important, you can set a single entry for anyothernw (any other
network). This setting will affect all accessing users, regardless of IP address, and
require them to be authenticated at the specified level. This is the most common
method for implementing step-up authentication.

Syntax:
pdadmin> pop modify pop_name set ipauth anyothernw level_index

The anyothernw entry is used as a network range that will match any network not
otherwise specified in the POP. This method is used to create a default entry which
could either deny all unmatched IP addresses or allow anyone access who can
meet the authentication level requirement.

By default, anyothernw appears in a POP with an authentication level index of 0.
The entry appears as "Any Other Network" in the pop show command:
pdadmin> pop show test

Protected object policy:test
Description: Test POP
Warning: no
Audit level: none
Quality of protection: none
Time of day access: sun, mon, tue, wed, thu, fri, sat:

anytime:local
IP Endpoint Authentication Method Policy

Any Other Network 0

During step-up authentication, validation of the supplied user ID can be enabled
by setting the verify-step-up-user parameter in the [module-mgr] stanza to true.
[module-mgr]
verify-step-up-user = true

Enabling the verify-step-up-user parameter ensure that when prompted to
re-authenticate using a higher level mechanism, the entered identity matches the

138 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

identity originally entered. If the identities don't match, a generic authorization
server error page is returned. This page can be customized if so desired.

Step-up authentication example
To configure authentication:
1. Configure authentication levels in pdwebpi.conf:

[authentication-levels] or [authentication-levels:virtual_host_label]
1 = BA
2 = token

2. Configure IP Endpoint Authentication Method POP attribute:
pdadmin> pop modify test set ipauth anyothernw 2
pdadmin> pop show test

Protected object policy:test
Description: Test POP
Warning: no
Audit level: none
Quality of protection: none
Time of day access: mon, wed, fri:anytime:local
IP Endpoint Authentication Method Policy

Any Other Network 2

Users accessing objects that are protected by the test POP require level 2
authentication, or the users will be forced to authenticate with the token
method.
See also “Network-based authentication Protected Object Policy” on page 142.

Step-up authentication notes and limitations
Note that:
v Step-up authentication is supported over both HTTP and HTTPS.
v You cannot step-up from the HTTP protocol to HTTPS.
v Authentication methods not specified in the [authentication-levels] stanza

default to level 1.
v Authentication methods can be specified only once in the level list.
v SPNEGO does not step-up to any authentication method that uses POST forms.

Configuring step-up behavior using SPNEGO authentication module results in
an error page being returned to the client.

v Incorrect configuration of step-up authentication levels results in the disabling of
step-up functionality within the plug-in. This situation can lead to unexpected
authentication behavior, such as the password logon page being issued for
objects protected by a POP that requires the token passcode authentication
method.
After configuring step-up authentication mechanisms, check the pdwebpi.log file
for reports of any configuration errors.

Multi-factor authentication

Multi-factor authentication functionality is an extension of step-up authentication
functionality that allows you to specify a protected object policy (POP) that forces
the user to authenticate using all authentication mechanisms with a level lower
than the configured POP authentication level. That is, the user is required to have
authenticated at all levels up to, and including, the required level before access is
granted. Multi-factor authentication can also be used in conjunction with
re-authentication to force a multi-factor re-authentication.

Chapter 5. Security policy 139

Standard authentication-level based authentication allows a policy to be associated
with an object that sets a minimum required authentication level that must be
achieved before access is granted. The supported authentication mechanisms are
given an ordering in the configuration that specifies which mechanisms are
considered stronger than others.

When a user first authenticates in order to access an object, they are offered the
choice of all authentication methods that meet the required level for that object. It
is up to the user to choose which method they will use.

To achieve multi-factor authentication, step-up authentication needs to be
configured as discussed in “Authentication-strength Protected Object Policy
(Step-up)” on page 136. Once step-up authentication is configured, you will need
to add the extended attribute, MULTI-FACTOR-AUTH, to a protected object policy
(POP) for a IBM Security Access Manager Plug-in for Web Servers object or objects.

When the MULTI-FACTOR-AUTH attribute is set, all authentication levels up to
the specified POP authentication level are required before access to the resource is
granted.

As an example, assume the following configuration is set in the configuration file:
[authentication-levels]
1 = cert
2 = forms

With the above configuration, when a POP attached to a resource which requires
an authentication level of 2 and the new MULTI-FACTOR-AUTH attribute is set to
true, the user must first supply a valid client certificate before entering a
forms-based logon. If the POP attached to the resource does not have the
MULTI-FACTOR-AUTH attribute enabled, then only form-based authentication is
used.

Enabling multi-factor authentication

Multi-factor authentication is implemented using a POP policy placed on the
objects requiring multi-factor authentication.

Syntax:
pdadmin> pop modify pop_name set attribute MULTI-FACTOR_AUTH true

Reauthentication Protected Object Policy

IBM Security Access Manager Plug-in for Web Servers can force a user to perform
an additional log on (reauthentication) to ensure that a user accessing a protected
resource is the same person who initially authenticated at the start of the session.

Reauthentication can be activated by a Protected Object Policy (POP) on the
protected object or by expiration of the session cache inactivity timeout value. This
section discusses reauthentication based on security policy as dictated by a POP
extended attribute. Refer to “Configuring the plug-in session/credentials cache” on
page 121 for details on configuring the Session/Credential Cache.

140 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Conditions affecting POP reauthentication
Forced reauthentication provides more protection for sensitive resources in the
secure domain. Reauthentication that is based on security policy is activated by a
specific extended attribute in a POP that protects the requested resource object. The
POP can be directly attached to the object, or the object can inherit the POP
conditions from a parent object.

Reauthentication is supported by the following plug-in authentication methods:
v Forms (user name and password) authentication
v Token authentication

In addition, a custom user name/password external authentication mechanism can
be written to support reauthentication.

Reauthentication assumes that the user initially logged in to the secure domain and
that a valid credential exists for the user. During reauthentication, the user must
log on using the same identity that generated the existing credential. Security
Access Manager preserves the user's original session information, including the
credential, during reauthentication. The credential is not replaced during
reauthentication.

During reauthentication, the plug-in also caches the request that prompted the
reauthentication. Upon successful reauthentication, the cached data is used to
rebuild the request.

If reauthentication fails, the plug-in returns the logon prompt again. If
reauthentication succeeds, but the ACL check fails for that resource, a 403
"Forbidden" message is returned. The user is denied access to the requested
resource. In either case, the user is never logged off. Using a still valid credential,
the user can end the reauthentication process (by requesting another URL) and still
participate in the secure domain by accessing other resources that do not require
reauthentication.

Creating and applying the reauthentication POP

Forced reauthentication based on security policy is configured by creating a
protected object policy (POP) with a special extended attribute named "reauth".
You can attach this POP to any object that requires the extra protection provided
by forced reauthentication.

Remember that all children of the object with the POP also inherit the POP
conditions. Each requested child object requires a separate reauthentication.

Use the pdadmin pop create, pdadmin pop modify, and pdadmin pop attach
commands. The following example illustrates creating a POP called "secure" with
the reauth extended attribute and attaching it to an object:
pdadmin>pop create secure
pdadmin>pop modify secure set attribute REAUTH true
pdadmin>pop attach /PDWebPI/hostA/budget.html secure

Anyone attempting to access budget.html is forced to reauthenticate using the
same identity and authentication method that generated the existing credential.

Chapter 5. Security policy 141

If the user requesting the resource is unauthenticated, the POP forces the user to
authenticate. Reauthentication is required for every access to objects protected by a
reauthentication policy.

In situations when most but not all objects in a directory require reauthentication,
it is best to attach a POP to the entire directory including the "reauth" extended
attribute. For those objects that do not require reauthentication, attach a POP that
is identical to that for the directory but exclude the "reauth" extended attribute.

Details about the pdadmin command line utility can be found in the IBM Security
Access Manager for Web: Base Administration Guide.

Network-based authentication Protected Object Policy

The network-based authentication Protected Object Policy (POP) makes it possible
to control access to objects based on the IP address of the user. You can use this
functionality to prevent specific IP addresses (or IP address ranges) from accessing
any resources in your secure domain.

You can also apply step-up authentication configuration to this policy and require
a specific authentication method for each specified IP address range.

Network-based authentication policy is set in the IP Endpoint Authentication
Method attribute of a POP policy. You must specify two requirements in this
attribute:
v Authentication levels
v Allowed networks

For details on specifying configuration levels, refer to “Configuring levels for
step-up authentication” on page 137.

Specifying IP addresses and ranges

After configuring the authentication levels, you must specify the IP addresses and
IP address ranges permitted by this POP policy.

The pdadmin pop modify set ipauth add command specifies both the network (or
network range) and the required authentication level in the IP Endpoint
Authentication Method attribute.

Syntax:
pdadmin> pop modify pop_name set ipauth add network netmask level_index

The configured authentication levels are linked to IP address ranges. This method
is intended to provide flexibility. If filtering users by IP address is not important,
you can set a single entry for anyothernw (any other network). This setting affects
all accessing users, regardless of IP address, and requires them to authenticate at
the specified level.

Syntax:
pdadmin> pop modify pop_name set ipauth anyothernw level_index

142 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Conversely, if you want to ignore the authentication level and want to allow or
deny access based only on IP address, you can use level 0 for ranges that you want
to allow in and "forbidden" for ranges you want to deny.

The anyothernw entry is used as a network range that matches any network not
otherwise specified in the POP. This method can be used to create a default entry
that could either deny all unmatched IP addresses or allow access to anyone who
meets the authentication level requirement.

By default, anyothernw appears in a POP with an authentication level index of 0.
The entry appears as "Any Other Network" in the pop show command:
pdadmin> pop show test

Protected object policy: test
Description: Test POP
Warning: no
Audit level: none
Quality of protection:none
Time of day access: sun, mon, tue, wed, thu, fri, sat:

anytime:local
IP Endpoint Authentication Method Policy

Any Other Network 0

See “Configuring levels for step-up authentication” on page 137 for a more
detailed discussion on setting authentication levels.

Example

Require users from IP address range 9.0.0.0 and netmask 255.0.0.0 to use level 1
authentication ("password" by default):
pdadmin> pop modify test set ipauth add 9.0.0.0 255.0.0.0 1

Require a specific user to use level 0 authentication:
pdadmin> pop modify test set ipauth add 9.1.2.3 255.255.255.255 0

Prevent all users (other than those specified as in the examples above) from
accessing the object:
pdadmin> pop modify test set ipauth anyothernw forbidden

Disabling step-up authentication by IP address

To disable step-up authentication by IP address, enter the following command:
pdadmin> pop modify pop_name set ipauth remove network netmask

For example:
pdadmin> pop modify test set ipauth remove 9.0.0.0 255.0.0.0

Network-based authentication algorithm

IBM Security Access Manager Plug-in for Web Servers uses the following algorithm
to process the conditions in a POP:
1. Check the IP endpoint authentication method policy on the POP.
2. Check ACL permissions.
3. Check time-of-day policy on the POP.
4. Check the audit level policy on the POP.

Chapter 5. Security policy 143

Quality-of-protection Protected Object Policy

The quality-of-protection Protected Object Policy (POP) attribute allows you to
specify what level of data protection is required when performing an operation on
an object.
pdadmin> pop modify pop_name set qop {none|integrity|privacy}

Table 27. QOP level descriptions

QOP level Description

privacy Data encryption is required (SSL).

integrity Use some mechanism to ensure that the data has not changed.

none No method of data protection is used.

For example:
pdadmin> pop modify test set qop privacy

The quality-of-protection POP attribute permits a single transaction when the "yes"
response to the ACL decision also includes the required quality-of-protection level.
If the plug-in cannot guarantee the required level of protection, the request is
denied.

Handling unauthenticated users (HTTP/HTTPS)

IBM Security Access Manager Plug-in for Web Servers accepts requests from both
authenticated and unauthenticated users over HTTP and HTTPS. The plug-in then
relies on the Authorization Server to enforce security policy by permitting or
denying access to protected resources.

The following conditions apply to unauthenticated users who access over SSL:
v The exchange of information between the unauthenticated user and the plug-in

is encrypted – as it is with an authenticated user.
v An SSL connection between an unauthenticated user and the plug-in requires

only server-side authentication.

Processing a request from an anonymous client
Steps to process a request from an anonymous client include:
1. An anonymous client makes a request to the Web server through the plug-in

(using HTTP or HTTPS).
2. The plug-in creates an unauthenticated credential for this client.
3. The request proceeds, with this credential, to the protected Web object.
4. The Authorization Server checks the permissions on the unauthenticated entry

of the ACL for this object, and permits or denies the requested operation.
5. Successful access to this object depends on the unauthenticated ACL entry

containing at least the read (r) permission.
6. If the request fails the authorization decision, the client receives a logon form

(BA or Forms-based).

144 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Forcing user log on

You can force an unauthenticated user to log on by correctly setting the
appropriate permissions on the unauthenticated entry in the ACL policy that
protects the requested object.

The read [PDWebPI]r permission allows unauthenticated access to an object.

To force an unauthenticated user to log on, remove the read [PDWebPI]r
permission from the unauthenticated entry in the ACL policy that protects the
object.

Applying unauthenticated HTTPS

There are many practical business reasons for supporting unauthenticated access to
the plug-in enhanced Web server over HTTPS. These include:
v Some applications do not require a personal log on, but require sensitive

information, such as addresses and credit card numbers. Examples include
online purchases of airline tickets and other merchandise.

v Some applications require that you register for an account with the business
before you can proceed with further transactions. Again, sensitive information
must be passed over the network.

Controlling unauthenticated users with ACL/POP policies
To control unauthenticated users with ACL/POP policies:
1. To permit unauthenticated user access to public objects, protect the public

content with an ACL that contains at least the read [PDWebPI]r permission for
the unauthenticated and any-other entries:
unauthenticated [PDWebPI]r
any-other [PDWebPI]r

Note:

v The "any-other" entry type is also known as the "any-authenticated" entry
type.

v The unauthenticated entry is a mask (a bitwise "and" operation) against the
any-other entry when permissions are determined. A permission for
unauthenticated is granted only if the permission also appears in the
any-other entry. Since unauthenticated depends on any-other, it makes little
sense for an ACL to contain unauthenticated without any-other. If an ACL
does contain unauthenticated without any-other, the default response is to
grant no permissions to unauthenticated.

2. To require encryption (SSL), protect the content with a Protected Object Policy
(POP) that specifies privacy as a condition. See “Quality-of-protection Protected
Object Policy” on page 144.

Policy for unprotected resources

The plug-in allows you to specify the resources in your network that do not
require an authorization decision; that is, resources that can be accessed by both
authenticated and unauthenticated users.

Chapter 5. Security policy 145

When identified through special policy, these resources are added to a plug-in
cache called the Unprotected Resource Cache (URC). Requests for cached
unprotected resources can then be sent directly to the Web server for processing.

The processing bypasses the authorization server and all of the following:
authorization decisions, auditing, Web log module processing, dynamic URL
module processing, CDSSO or eCSSO processing, tag value processing, and
external authentication interface URI processing.

Depending on the level of requests for unprotected resources, a correctly
configured unprotected resource cache can markedly improve system performance
by avoiding the inter-process communication between the plug-in and the
authorization server. Unprotected resources are identified using Protected Object
Policy (POP).

Security Access Manager namespace inheritance rules apply to the objects defined
as unprotected resources. When an unprotected POP is attached to a protected
object in the Security Access Manager namespace, that object and all its
subordinates inherit the POP policy and become part of the unprotected resource
cache.

Browser Web Server

Authorization
Server

plug-in

URC

Browser Web Server

Authorization
Server

plug-in

URC

Application

Application

Request For
Protected Data

Request For
Unprotected Data

Figure 8. Bypassing the authentication server for unprotected resources

146 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

In the figure below, the unprotected POPs placed on /docs as shown will cause
those objects and all subordinate objects to become part of the unprotected
resource cache. When an unprotected resource POP is removed from the object
private (POP2), that object and any subordinates then cease to be part of the
unprotected resource cache.

The authorization server is bypassed for those objects in the unprotected resource
cache. As such, care should be taken when applying unprotected policy to objects
to ensure that you do not inadvertently permit unrestricted access to objects that
would otherwise require authorization.

The format of your object space should be considered and the Security Access
Manager namespace inheritance rules fully understood before applying policy for
unprotected objects.

Note: Objects configured for inclusion in the unprotected resource cache cannot be
used in conjunction with pre-authorization URL mapping functions such as the
plug-in's dynamic URL mapping functionality.

Configuring the unprotected resource cache

Configuration entries for the unprotected resource cache are located in the
[unprotected-resource-cache] stanza of the plug-in pdwebpi.conf configuration file.

Use the enabled entry to enable or disable the unprotected resource cache. A value
of yes (or true) enables the cache, a value of no (or false) disables it.

The plug-in polls the authorization server to determine whether its current version
of the unprotected resource cache is out of date. The maximum length of time
between each poll of the authorization server is set using the entry,
max-poll-interval. The max-poll-interval property is set at 30 seconds by
default.

PDWebPI

Virtual
Host 2

Virtual
Host 1

docs

/

docs

public gifs private

POP1
[PDWebPI]r

POP2
“”

Figure 9. Unprotected resource cache POP inheritance.

Chapter 5. Security policy 147

Setting the unprotected resource cache extended POP
attribute

Unprotected resources are identified for inclusion in the unprotected resource
cache by attaching POP objects to the required resources within the Security Access
Manager namespace. Each of the POP objects needs to include a permission set as
an extended attribute. The command syntax for specifying an object for inclusion
in the unprotected resource cache is:
pdadmin> pop modify POP_name set attribute UNPROTECTED permission_set

The command parameter, permission_set, identifies the resources, controlled by the
POP and with the specified permissions, that are to be considered unprotected. For
example; consider the object space in Figure 9 on page 147. The following
commands would create the POPs shown in the example and determine the objects
that are to be considered as unprotected.
pdadmin> pop attach /PDWebPI/virtual_host_1/docs URC-POP
pdadmin> pop attach /PDWebPI/virtual_host_2/docs URC-POP
pdadmin> pop modify URC-POP set attribute UNPROTECTED [PDWebPI]rw
pdadmin> pop attach /PDWebPI/virtual_host_2/docs/private URC-POP-private
pdadmin> pop modify URC-POP-private set attribute UNPROTECTED ""

The above commands attach two objects to the POP, URC-POP. The POP is then
modified so that all resources controlled by URC-POP, with the permissions
[PDWebPI]rw, are considered unprotected. The wildcard character, '*', can be used
in place of a permission set to specify all resources controlled by the specified POP.

In the example commands, another POP is created, URC-POP-private. This POP
removes the object, /private, from the unprotected resource cache. An empty
permission string are used to signify that objects controlled by the specified POP
are not included in the unprotected resource cache.

Note: A trade-off of using the unprotected resource cache is the native Web server
log files and audit trails will not contain user identity information or identify the
transaction as unauthenticated.

148 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 6. Web single sign-on solutions

When IBM Security Access Manager Plug-in for Web Servers is implemented as an
authorization service to provide protection to a secure domain, there is often a
requirement to provide solutions for single sign-on to resources within that
domain. This chapter discusses single sign-on solutions for the Web space
protected by IBM Security Access Manager Plug-in for Web Servers.

This chapter includes the following topics:
v “Single sign-on concepts”
v “Automatically signing-on to a secured application” on page 150
v “Single sign-on to the plug-in from WebSEAL or other proxy” on page 152
v “Using the Failover cookie for single sign-on” on page 153
v “Using global single sign-on (GSO)” on page 154
v “Security Provider NEGOtiation (SPNEGO) single sign-on” on page 157
v “Single sign-on using forms” on page 157

Single sign-on concepts

When a protected resource is located on the plug-in enhanced Web application
server, a client requesting that resource can be required to perform multiple logons
when accessing different secure applications. Each logon is likely to require
different logon identities.

The problem of administering and maintaining multiple logon identities can often
be solved with a single sign-on (SSO) mechanism. SSO allows the user to access a
resource using only one initial logon. Any further logon requirements for resources
on the Web server are handled transparent to the user.

There are a number of different single sign-on architectures supported by IBM
Security Access Manager Plug-in for Web Servers. These are:
1. One plug-in instance providing single sign-on to more than one secure

application on a server.
2. Single sign-on to the plug-in from WebSEAL or other proxy agent such as a

WAP gateway.
3. Use of failover cookies to provide single sign-on between different domains.
4. Use of the Global Single sign-on (GSO) Lockbox module to provide access to

applications using stored user credential information.
5. Use of Security Provider NEGOtiation (SPNEGO) for permitting access to

resources on IIS based Web servers.
6. Forms based authentication as a mechanism for SSO.
7. Cross Domain Single Sign On which provides a mechanism for transferring

user credentials across multiple secure domains.
8. e-Community single sign-on, where a user authenticates once and is issued a

token that allows them to access other domains within a virtual community of
domains without the need to re-authenticate.

The first six SSO scenarios are discussed in this chapter. The seventh and eighth
scenarios are the topic of the next chapter.

© Copyright IBM Corp. 2000, 2012 149

Automatically signing-on to a secured application

HTTP headers and LTPA cookies (when the application is WebSphere Application
Server) can be used to achieve SSO to applications on a server that are protected
by one plug-in instance.

After initial authentication of the client, the plug-in can build an HTTP header
containing client identity information that can be used for automatic authentication
to secure applications running on the server. In a similar way, an LTPA cookie can
be used to achieve SSO to a Web application server such as WebSphere.

Configuring single sign-on to secure applications using HTTP
headers

The HTTP headers used for signing on to an application are generated by the
iv-header post-authorization module. The set of headers that can be generated are
collectively called IV headers.

After the successful authorization of a user request, the plug-in can insert IV
headers that define the client's identity into the request for processing by the
application. This header information can be used as proof of the user's identity
when the request is handled by an application hosted by the secured Web server.
The user is spared the need to log on each time a new secure application is
accessed.

Configured for post-authorization processing, IV headers are inserted with one,
some, or all of the iv-user, iv-user-l, iv-creds, iv-groups, iv-remote-address HTTP
header types. These header types are described in the following table.

Table 28. IV header field descriptions

IV Header Field Description

iv-user The short name of the Security Access Manager user. Defaults
to unauthenticated if the client is unauthenticated (unknown).

iv-user-l The full domain name of the user (long form), for example,
LDAP distinguished name.

iv-groups A list of the groups to which the user belongs.

iv-creds Encoded opaque data structure representing the user's Security
Access Manager credential.

iv-remote-address The IP address of the client. This value could represent the IP
address of a proxy server or a network address translator
(NAT).

Enabling and disabling generation of IV headers

To enable the plug-in to insert IV headers into authorized requests, the plug-in
needs to be configured to use IV headers for post-authorization processing. The
[common-modules] stanza in the pdwebpi.conf configuration file defines the use of
all authentication methods. To enable IV headers for post-authorization processing,
assign the parameter post-authzn the keyword value iv-headers in the
[common-modules] stanza in the pdwebpi.conf configuration file. That is:
[common-modules]
post-authzn = iv-headers

150 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring IV header parameters

IV header authentication parameters are configured in the [iv-headers] stanza of
the pdwebpi.conf configuration file.

The generate parameter specifies the type of IV headers to generate when
forwarding proxied requests. By default, the plug-in generates all types of IV
headers when forwarding proxied requests. The valid options are all, iv-creds,
iv-user, iv-user-l, and iv-remote-address. To enter more than one header type,
separate the values with a comma.

For example:
[iv-headers]
generate = iv-creds,iv-user,iv-user-1

Single sign-on to WebSphere application server using LTPA
cookies

When the plug-in is installed as a protective layer on a WebSphere application
server, accessing clients are faced with two potential logon points – the plug-in and
secure applications served by WebSphere. To provide a single point of logon in this
situation the plug-in can be configured to generate and pass the cookie-based
lightweight third party authentication (LTPA) mechanism onto Web application
servers that support LTPA cookies.

When a user makes a request for a resource on a server, the user must first be
authenticated to the plug-in. After successful authentication, the plug-in generates
an LTPA cookie on behalf of the user. The LTPA cookie, which serves as an
authentication token for the Web application server, contains user identity and
password information. This information is encrypted using a password-protected
secret key shared between the plug-in and the application server.

The plug-in inserts the cookie in the HTTP header of the request that is sent to the
Web application server. The application server receives the request, decrypts the
cookie, and authenticates the user based on the identity information supplied in
the cookie.

To improve performance, the plug-in stores the LTPA cookie in the session cache
and uses the cached LTPA cookie for subsequent requests during the same user
session. For details on setting the parameters for the session cache, see
“Configuring the plug-in session/credentials cache” on page 121.

Configuring single sign-on to WebSphere using LTPA cookies

Use of LTPA cookies to achieve single sign-on to application servers supporting
LTPA cookies, is part of the plug-in's post-authorization processing. To enable this
functionality, enter the key value ltpa for the parameter post-authzn in the
[common-modules] stanza of the pdwebpi.conf configuration file:
[common-modules]
post-authzn = ltpa

LTPA cookie configuration is performed in the [ltpa] stanza of the pdwebpi.conf
configuration file. The following configuration parameters are available.

Chapter 6. Web single sign-on solutions 151

Table 29. LTPA configuration parameters

Parameter Description

ltpa-keyfile The full path name of the key file used to encrypt the
identity information contained in the cookie.

ltpa-stash-file The location of the password stash file. If no password
stash file exists, this entry should be commented out.

ltpa-password The password to use when a password stash file does not
exist.

ltpa-cookie-name The name of the cookie in which the LTPA token is stored.
If no value is defined, the default value LtpaToken is used.

ltpa-lifetime The lifetime, in seconds, of the LTPA cookie.

ltpa-generate-unauth Determines whether LTPA cookies are created for
unauthenticated users. LTPA cookies are not useful for
unauthenticated users and may result in unexpected
behavior.

Technical notes for LTPA single sign-on

For LTPA single sign-on, note that:
v The key file contains information about a specific Web application server. If you

add more than one application server to the same plug-in, all servers will share
the same key file.

v For single sign-on to succeed, the plug-in and the application server must in
some way share the same registry information.

v The application server is responsible for setting up LTPA and the creation of the
shared secret key.

Single sign-on to the plug-in from WebSEAL or other proxy

When the plug-in enhanced Web server receives requests from a trusted
application such as WebSEAL or a multiplexing proxy agent, IV headers may be
inserted into the requests relayed to the plug-in. IV headers contain information
that identify the originating client rather than the relaying server. The information
in the headers is used to construct an originating client credential for authorization
purposes.

If the plug-in is configured to use IV Headers to perform client authentication, the
plug-in creates a client credential using the identity extracted from an IV header
found in the transaction request. Because it is easy for clients to fake IV headers,
such a credential is created only when the 'use secondary authenticator' flag in the
authenticate request is set.

For authentication, IV headers can be configured to accept one, some, or all of
iv-user, iv-user-l, iv-creds or iv-remote-address headers in the request as proof of
authentication when received via a proxy. The iv-remote-address header is used to
record the real remote address of the user. These IV header types are recognized by
Security Access Manager and WebSEAL.

Table 30. IV header field descriptions

IV Header Field Description

iv-user The short name of the client. Defaults to unauthenticated if the
client is unauthenticated (unknown).

152 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 30. IV header field descriptions (continued)

IV Header Field Description

iv-user-l The full domain name of the user (long form).

iv-groups A list of the groups to which the client belongs.

iv-creds Encoded opaque data structure representing a Security Access
Manager credential.

iv-remote-address The IP address of the client. This value could represent the IP
address of a proxy server or a network address translator
(NAT).

Note: Access Manager only trusts headers received from trusted frontends. A
frontend is considered trusted if it is recognized as a Multiplexing Proxy Agent
(MPA). For details on configuring the plug-in for supporting MPAs refer to
“Supporting Multiplexing Proxy Agents (MPA)” on page 110.

To be accepted as proof of client identity, WebSEAL or other proxy must itself be
authenticated to the plug-in. This is typically achieved by a mutually authenticated
SSL connection between the proxy and the Web server secured by the plug-in.

Enabling and disabling authentication using IV headers

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable authentication using IV headers,
assign the reference 'iv-header' to the authentication parameter:
[common-modules]
authentication = iv-header

Configuring IV header parameters

IV header authentication parameters are configured in the [iv-headers] stanza of
the pdwebpi.conf configuration file.

The accept parameter specifies the types of IV header that are accepted for
performing IV header authentication. By default the plug-in accepts all types of IV
header. The valid options are all, iv-creds, iv-user, iv-user-l, and iv-remote-address.
To enter more than one header type, separate the values with a comma.

For example:
[iv-headers]
accept = iv-creds,iv-user

Using the Failover cookie for single sign-on

With failover cookies configured for post-authorization processing, the plug-in
encrypts a client's credential data in either a server-specific or domain-wide cookie.
The cookie is placed on the browser when the client first connects.

When the client attempts to access another secure server within the domain, the
cookie is presented to the next server that the client is redirected to. The cookie is
used for automatic re-authentication so the client is spared the task of

Chapter 6. Web single sign-on solutions 153

re-authenticating manually. The plug-ins on replicated servers share a common key
that decrypts the credential information held in the cookie, establishing a new
session.

For further details on configuring failover cookie authentication refer to
“Configuring failover authentication” on page 81.

Enabling single sign-on using Failover cookies

Failover cookies can be configured to perform authentication and
post-authorization tasks.

Plug-ins configured for post-authorization processing using failover cookies,
encrypt and store a credential as a failover cookie in the transaction response.

Plug-ins configured for using failover cookies for performing authentication,
re-authenticate clients using the encrypted credential from a failover cookie found
in the transaction request.

To enable SSO using failover cookies, assign the reference 'failover' to the
authentication and post-authzn parameters in the [common-modules] stanza of
the configuration file:
[common-modules]
authentication = failover
post-authzn = failover

Using global single sign-on (GSO)
IBM Security Access Manager Plug-in for Web Servers can be configured to grant
users access to the computing resources they are authorized to use through a
single login.

Designed for large enterprises consisting of multiple systems and applications
within heterogeneous, distributed computing environments, GSO eliminates the
need for end users to manage multiple user names and passwords.

To create a GSO solution, Security Access Manager GSO resources and GSO
resource groups must first be created using the Web portal manager or the
pdadmin utility. For details on creating GSO resources and GSO resource groups
refer to the IBM Security Access Manager for Web: Base Administration Guide.

The Basic Authentication (BA) post-authorization module is called after a request
has been authorized to determine if a resource credential is available for the
requested resource. The resource credential is a username/password combination
that is mapped into each resource and stored in the user registry.

The BA post-authorization module retrieves the resource credential appropriate for
the user and the requested application resource and creates an HTTP Basic
Authentication header using the retrieved resource credential and adds this BA
header to the HTTP request. The resource credential is retrieved from the user
registry for the first request only. For all subsequent requests, the resource
credential is retrieved as session information.

The following figure illustrates how the GSO mechanism is used to retrieve user
names and passwords for backend application resources.

154 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

1. User Michael requests access to the protected back-end Web server application,
travel-app. Security Access Manager authenticates the client and a Security
Access Manager identity is obtained. If the resource requested is unprotected,
the request is forwarded to the Web server for handling.

Note: The single sign-on process is independent of the initial authentication
method.

2. The plug-in passes the Security Access Manager identity to the user registry
server (LDAP or URAF).
The user registry server maintains a complete database of authentication
information in the form of mappings of resources to specific authentication
information. The authentication information is a user name / password
combination known as a resource credential. Resource credentials can only be
created for registered users.
The following table illustrates the structure of the GSO resource credential
database:

Michael Jane

resource: travel-app
username=mike
password=123

resource: travel-app
username=Jane
password=abc

resource: payroll-app
username=smith
password=456

resource: payroll-app
username=Jones
password=xyz

3. The registry returns username "mike" and password "123" to the plug-in.

1

Browser

Registry

32

5

Web server

Plug-in

travel_app

payroll_app
4

Username and password
Security Access
Manager identity

Figure 10. User access to secure applications using GSO.

Chapter 6. Web single sign-on solutions 155

4. The plug-in inserts Michael's username and password information in the HTTP
Basic Authentication (BA) header of the request that is sent back to the Web
server.

5. The Web server authenticates Michael (for the resource he has requested) based
on his credentials in the BA header inserted in the request from Step 4, as if it
is from the client.

Configuring Global single sign-on

To enable Global Single sign-on functionality you need to configure pdwebpi.conf.
In the [common-modules] stanza, specify the value BA for the post-authzn
parameter as in the following:
[common-modules]
authentication = ...
session = ...
post-authzn = BA

Ensure that in the [modules] stanza the parameter BA is assigned at least the
default module; that is:
[modules]
BA = pdwpi-ba-module

Within the [BA] stanza of the pdwebpi.conf configuration file there are a number of
parameters used for configuring the BA post-authorization module. These are:
v basic-auth-realm

v strip-hdr

v add-hdr

v gso-resource-name

v supply-password

v supply-username

For achieving GSO to back-end applications, the parameters add-hdr and
gso-resource-name need configuring. Other BA parameters are discussed in more
detail in “Configuring Basic Authentication” on page 61.

The add-hdr parameter controls the addition of a new BA header once the request
has been authenticated. For achieving GSO, set this parameter to the value gso:
[BA:virtual_host1]
...
add-hdr = gso

The setting of the add-hdr parameter to the value gso means a new BA header is
added to the HTTP request based on resource information that is stored in the user
registry. The gso-resource-name parameter in the [BA] stanza of the configuration
file specifies the name of the Web server resource that is to be GSO enabled. This
can be specified on a per virtual host basis. The resource credential stored in the
user registry is mapped to each resource stored in the user registry.

Set the gso-resource-name parameter to the name of the Security Access Manager
resource that is to be GSO enabled. For example:
[BA:virtual_host1]
...
gso-resource-name = payroll-app

156 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Only one GSO resource name can be specified per virtual host. If no value is
specified for gso-resource-name, the virtual host name is used as the GSO resource
name.

Note: If you are sharing an LDAP registry between Sun Java System (formerly Sun
ONE) and Security Access Manager, you cannot create GSO resource credentials
within Security Access Manager with target user names the same as those
usernames expecting to authenticate to the Sun Java System Web Server. This is
because the Sun Java System Web Server cannot limit the LDAP search criteria
when authenticating users to search only for objects of the correct LDAP object
class.

Security Provider NEGOtiation (SPNEGO) single sign-on

Using SPNEGO as an authentication mechanism within the plug-in provides a
single sign-on capability that permits users to access resources on a secure IIS Web
server from a Windows client without the need for authentication other than the
initial logon to the domain. Operational and configuration details of SPNEGO
single sign-on are included in “Configuring SPNEGO authentication” on page 72.

Single sign-on using forms

Single sign-on forms authentication allows IBM Security Access Manager Plug-in
for Web Servers to transparently log an authenticated Security Access Manager
user in to a plug-in secured Web server that requires authentication using an
HTML form.

Single sign-on forms authentication supports existing applications that use HTML
forms for authentication and cannot be modified to directly trust the authentication
performed by the plug-in. Plug-in form-based single sign-on provides a quick
integration solution that should be regarded as an interim solution to be used
while a more trusted and efficient method for authentication is developed.

Enabling single sign-on forms authentication produces the following results:
v The plug-in interrupts the authentication process initiated by the back-end

application.
v The plug-in supplies data required by the login form and submits the login form

on behalf of the user.
v The user is unaware that a second login is taking place.
v The back-end application is unaware that the login form is not coming directly

from the user.

The plug-in must be configured to:
v Recognize and intercept the login form
v Fill in the appropriate authentication data

The administrator enables forms single sign-on by configuring how the login form
is to be recognized, completed, and processed.

Forms single sign-on process flow

The following scenario assumes that the plug-in has already authenticated the user.

Chapter 6. Web single sign-on solutions 157

1. The user requests a resource on a protected virtual host.
2. The plug-in passes the request to the back-end application.
3. Because the back-end application requires the user to authenticate, a redirect

to the application's login page is sent back to the plug-in.
4. The plug-in passes the redirect to the browser.
5. The browser follows the redirect and requests the login page.

Note: Everything to this point in the process flow is standard plug-in
functionality.

6. The plug-in has been configured for forms single sign-on. The plug-in FSSO
module recognizes the request as a request for a login page, based on
information contained in the plug-in configuration file. The request is sent to
the application.

7. The application returns the login page and perhaps application-specific
cookies.

8. The plug-in intercepts the response and parses the HTML returned to identify
the login form. When the plug-in finds a HTML form in the document it
compares the action URI in the form to the value of the login-form-action
parameter from the plug-in configuration file.
If there is a match, the plug-in uses the form found, otherwise the plug-in
keeps searching for other forms. If no form in the page matches the action
URI pattern from the configuration file then the plug-in aborts forms single
sign-on processing and passes the unmodified response back to the browser.
If a login form is found, the plug-in parses the form HTML in the document
to identify the request method, the action URI, and any other input fields in
the form, saving them for use in step 10. It then sends the browser a redirect

Figure 11. Forms single sign-on process flow.

158 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

to the login form's action URI with a unique request identifier appended as a
query. Any application specific cookies are also included with the redirect.

9. The browser follows the redirect and requests the action URI.
10. The plug-in recognizes the inbound request by its unique query string and

generates the authentication request using the rules from the argument-stanza
and data saved in step 8. The completed login form (authentication request) is
then sent to the back-end application.

11. The application authenticates using the plug-in supplied authentication data in
the form. The application returns a redirect to the originally requested
resource.

12. The plug-in returns the redirect to the browser.

Note: This completes the forms SSO-specific functionality.
13. The browser follows the redirect and requests the resource.
14. The plug-in passes the request to secure resource.

During this process, the browser makes four requests to the plug-in. From the
user's perspective, only a single request for the resource is made. The other
requests occur automatically through HTTP redirects.

Requirements for application support

Single sign-on for forms authentication is supported on applications that meet the
following requirements:
1. The login page or pages for the application must be uniquely identifiable using

a single regular expression or several regular expressions.
2. The login page can include more than one HTML form. However, the login

form must be identified by applying a regular expression to the action URIs of
each of the login forms, or the login form is the first form in the login page.
Note that when using the "action" attribute to identify the login form, the
"action" attribute has not passed through the plug-in's HTML filtering. The
regular expression should match the action URI prior to being filtered.

3. Client-side scripting may be used to validate input data, but it must not modify
the input data. This precludes support for Web sites using Javascript to build
logon forms dynamically or to set cookies in the user's browser.

4. Login data is submitted at only one point in the authentication process.
5. The logon URI to be intercepted in step 8 in the previous section, must be

processed as a single request by the underlying Web server. PHP scripts
handled as external commands in Apache, for example, spawn multiple
sub-request and cannot be intercepted.

Enabling forms single sign-on

The FSSO module handles the forms single sign-on process. The module needs to
be called after the authorization of the request and before the Web server responds
to the request. The FSSO module therefore needs to be configured as a post-authzn
module and as a response module. These are specified in the [common-modules]
stanza in the pdwebpi.conf configuration file. That is:
[common-modules]
...
response = fsso

Chapter 6. Web single sign-on solutions 159

The response module is used to capture the login form presented by the Web
server so that it can be processed.

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for fsso exists:
[modules]
fsso = pdwpi-fsso-module

Since the primary role of the plug-in is to protect Web resources from
unauthorized access, it must authorize all requests for resources even if they are
part of a form-based single sign-on process. The plug-in checks the ACL database
before allowing access to the back-end application login page and also checks
before allowing access to the URI specified in the form action (where the
completed login form is sent). If the security policy does not give permission for
the current user to access these pages, then the form-based single sign-on will fail.

Configuring forms single sign-on

The forms single sign-on configuration information is located in the pdwebpi.conf
configuration file under the [fsso] or [fsso:virtual-host] stanza. The stanza contains
one or more login-page-stanza entries which point to other custom-named stanzas
that contain configuration information for the login pages found on the back-end
application.

The ability to support multiple login pages is important because a server might
host several applications that each use a different authentication method.

For example:
[fsso]
login-page-stanza = login-from-1
login-page-stanza = login-form-2

The custom login page stanza

Each custom login page stanza is used to intercept a particular URL pattern. The
stanza can contain the following parameters:

Parameter Description

login-page This parameter specifies a pattern, using a regular
expression, that uniquely identifies requests for an
application's login page. The configured pattern is compared
against the request URI.

login-form-action This parameter specifies a pattern, using a regular
expression, that identifies which form contained in the
intercepted page is the application's login form. If multiple
forms match the pattern, then the first is used.

argument-stanza This parameter points to another custom stanza that lists the
fields and data required for completing the login form.

gso-resource This parameter supplies the name of the Security Access
Manager resource that is to be used when loading GSO
sourced data defined in the arguments-stanza. Only one
GSO resource name can be specified per custom login page
stanza. If no value is specified for gso-resource, the virtual
host name is used as the GSO resource name.

160 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

For example:
[login-form-1]
login-page = /cgi-bin/getloginpage*
login-form-action = *
argument-stanza = form1-data
gso-resource = payroll-app

About the login-page parameter:

The value of the login-page parameter is a regular expression that the plug-in uses
to determine if an incoming request is actually a request for a login page. If this is
the case, the plug-in intercepts this request and begins the forms single sign-on
processing.

Only one login-page parameter is allowed in each custom login page stanza. You
must create an additional custom login page stanza for each additional login-page
parameter.

Note: Where two or more pages match the login-page regular expression, the first
match defines the down stream processing of the login-form.

The login-page regular expression is compared against the request URI. In the
following example, the URI of a request to a protected virtual host called
myserver1 might appear as follows:
https://myserver1.mycompany.com/auth/login.html

The part of this URL that is compared to the login-page regular expression is:
/auth/login.html

About the login-form-action parameter:

The login-form-action parameter is used to identify the login form on the page
returned by the back-end server following a request matching the login-page
parameter. Only one login-form-action parameter is allowed in each stanza.

The value of the login-form-action parameter is a regular expression that is
compared against the contents of the action= attribute of the HTML form tag. The
action attribute is a URI expressed as a relative, server-relative, or absolute path.
The login-form-action parameter must match this path as it comes from the
back-end server - even if it would normally be modified by the plug-in before
being forwarded to the client.

If multiple action attributes on the page match the regular expression, only the first
match is accepted as the login form.

If the login-form-action regular expression does not match any form on the page,
an error is returned to the browser reporting that the form could not be found.

You can set login-form-action = * as a simple way to match the login form when
the page includes only one login form.

Using regular expressions:

The special characters allowed in the regular expressions used in the forms single
sign-on configuration are defined in Appendix F, “Special characters allowed in
regular expressions,” on page 295.

Chapter 6. Web single sign-on solutions 161

In most cases, special characters are not required because the login page request is
a single identifiable URI. In some cases, you can use the "*" at the end of the
expression so that any query data at the end of the URI does not prevent the login
page from being matched.

The argument stanza:

The custom argument stanza contains one or more entries in the following form:
name = method:value

name

The value of the name parameter is set to equal the value of the name attribute of
the HTML input tag. For example:
<input name=uid type=text>Username</input>

This parameter can also use the value of the name attribute of the HTML select or
textarea tags.

method:value

This parameter combination retrieves the authentication data required by the form.
The authentication data can include:
v Literal string data

string:text

The input used is the text string.
v GSO user name and password

gso:username
gso:password

The input is the current user's GSO username and password (from the target
gso-resource specified in the custom login page stanza).

v Value of an attribute in the user's credential
cred:cred-ext-attr-name

By default, the credential includes information such as the user's Security Access
Manager user name and DN. To use the user's Security Access Manager user
name as the input value, specify the value as:
cred:azn_cred_principal_name

The user's DN may be accessed as:
cred:azn_cred_authzn_id

Custom credential attributes (added using the tag/value mechanism) can also be
used.

It is not necessary to specify hidden input fields in this stanza. These fields are
automatically retrieved from the HTML form and submitted with the
authentication request.

For example:
[form1-data]
uid = string:brian

162 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Note:

1. The plug-in does not execute script code (Javascript, AxcitveX, etc.) before the
form is submitted, which may cause problems if the code is required for the
login process. Problems will not arise if this code simply checks the input prior
to submission but problems may occur if the code modifies the user input.

2. Although forms-based SSO can make use of information in the GSO database,
it does not interfere with the GSO capability supplied by the BA module.
It is possible, if required, to have one GSO target in use to fill in the Basic
Authentication headers sent to the backend server and another specified in the
forms-based SSO configuration for use when filling in login forms.

Example configuration file for IBM HelpNow

The IBM HelpNow site invokes its own forms-based login and is therefore an
example of how a forms single sign-on solution can provide seamless access to the
site for its enrolled users.

This section contains:
v A form section, similar to the form sent on the HTML login page returned by

the HelpNow application
v The custom forms single sign-on configuration file used to process this form

The form found in the intercepted HTML page:
<form name="confirm" method="post" action="../files/wcls_hnb_welcomePage2.cgi">
<p>
Employee Serial Number:&nbp;
<input name="data" size="10" maxlength="6">
<p>
Country Name:
<select name="Cntselect" size="1">
<OPTION value="notselected" selected>Select Country</OPTION>
<OPTION value=675>United Arab Emirates - IBM</OPTION>
<OPTION value=866>United Kingdom</OPTION>
<OPTION value=897>United States</OPTION>
<OPTION value=869>Uruguay</OPTION>
<OPTION value=871>Venezuela</OPTION>
<OPTION value=852>Vietnam</OPTION>
<OPTION value=707>Yugoslavia</OPTION>
<OPTION value=825>Zimbabwe</OPTION>
</select>
</p>
<input type=submit value=Submit>
</form>

The custom configuration file used to process this form:
helpnow FSSO configuration:
[forms-sso-login-pages]
login-page-stanza = helpnow

[helpnow]
The HelpNow site redirects you to this page
you are required to log in.
login-page = /bluebase/bin/files/wcls_hnb_welcomePage1.cgi

The login form is the first in the page, so we can just call it
’*’.
login-form-action = *

The GSO resource, helpnow, contains the employee serial number.
gso-resource = helpnow

Chapter 6. Web single sign-on solutions 163

Authentication arguments follow.
argument-stanza = auth-data

[auth-data]
The ’data’ field contains the employee serial number.
data = gso:username

The Cntselect field contains a number corresponding to the employee’s
country of origin. The string "897" corresponds to the USA.
Cntselect = string:897

164 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 7. Cross-domain sign-on solutions

When IBM Security Access Manager Plug-in for Web Servers is implemented to
provide protection for a secure domain, there is often a requirement to provide
solutions for single sign-on to resources. This chapter discusses two methods for
achieving single sign-on across different plug-in protected domains: e-Community
single sign-on and cross domain single sign-on (CDSSO). Both solutions use a
trusted token to pass user authentication information between different domains.

Which solution you choose will depend on the amount of flexibility required.
e-Community single sign-on uses a central server which coordinates the single
sign-on process among the different domains. With CDSSO, there is no central
authentication server and no automated re-directs which provides more flexibility.

The following topics are covered:
v “Cross domain single sign-on (CDSSO)”
v “e-Community single sign-on” on page 171

Cross domain single sign-on (CDSSO)

Security Access Manager Cross-Domain Single sign-on (CDSSO) provides a
mechanism for transferring user credentials across multiple secure domains.

CDSSO supports the goals of scalable network architecture by allowing the
integration of multiple secure domains. For example, a large corporate extranet can
be set up with two or more unique domains—each with its own users and object
space. CDSSO allows movement of users between the domains with a single
sign-on. The CDSSO authentication mechanism does not rely on a Master
Authentication Server as “e-Community single sign-on” on page 171 does.

With CDSSO, when a user makes a request to a resource located in another
domain, the CDSSO mechanism transfers an encrypted user identity token from
the first domain to the second domain. The second domain now has the user's
identity (as authenticated in the first domain) and the user is not forced to perform
another login.

CDSSO domains are based on DNS domains. All servers in the same DNS domain
share the same symmetric key. In order to perform CDSSO with servers in another
DNS domain (which may or may not also be in a different Security Access
Manager domain) a different key is needed.

Authentication process flow for CDSSO

The CDSSO process flow is described in the diagram and text below. Any user
who wants to participate in multiple domains must have a valid user account in
the primary domain, in this case domainA, and an identity that can be mapped
into a valid account in each of the participating remote domains. A user cannot
invoke the CDSSO functionality without initially authenticating to an initial secure
domain (A) that contains the user's account.

© Copyright IBM Corp. 2000, 2012 165

1. The user makes a request to access a resource in domain B using a custom link
on a Web page in domain A.

2. The link contains a special CDSSO expression specified by the uri parameter in
the [cdsso] stanza of the pdwpi.conf configuration file. The default value is
pkmscdsso:
/pkmscdsso?destination-URL

For example:
/pkmscdsso?https://www.domainB.com/index.html

The request is first processed by the plug-in server in domain A. The plug-in
builds an authentication token that contains the user's Security Access Manager
identity (short name), the current domain ("A"), additional user information,
and a time stamp.
The additional user information (extended attributes) is obtained by a call out
to the customized CDMF shared library (cdmf_get_usr_attributes). This library
has the ability to supply user attributes that can be used by domain B during
the user mapping process.
Plug-in triple-DES encrypts this token data with the symmetric key generated
by the cdsso_key_gen utility. This key file is shared and stored in the
[cdsso-domain-keys] stanza of the pdwebpi.conf configuration file on both
domain A and domain B plug-in enhanced Web servers.
The token contains a configurable time stamp (authtoken-lifetime) that defines
the lifetime of the token. The time stamp, when properly configured, can
prevent replay attacks.

3. The domain A plug-in server re-directs the request plus the encrypted token
back to the browser and then to the domain B plug-in server (HTTP
redirection).

4. The domain B plug-in server uses its version of the same key file to decrypt
and validate the token as coming from the referring domain.

Figure 12. CDSSO process flow

166 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The domain B plug-in server now calls out to a CDSSO authentication
mechanism library. This CDSSO library in turn calls out to the customized
CDMF library which performs the actual user mapping (cdmf_map_usr).
The CDMF library passes the user's identity, and any extended attribute
information, back to the CDSSO library. The CDSSO library uses this
information to build a credential.

5. The domain B authorization service permits or denies access to protected
objects based on the user's credential and the specific ACL permissions
associated with the requested objects.

Enabling and disabling CDSSO authentication

The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable CDSSO authentication, assign the term
cdsso to the authentication parameter:
[common-modules]
authentication = cdsso

When using CDSSO authentication, the plug-in must also be configured for CDSSO
post-authorization processing. In the [common-modules] stanza of the
pdwebpi.conf configuration file, add the parameter post-authzn as in the following:
[common-modules]
authentication = cdsso
post-authzn = cdsso

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library name. Ensure that
the entry for forms authentication exists:
[modules]
cdsso = pdwpi-cdsso-module

Encrypting the authentication token data

The plug-in must encrypt the authentication data placed in the token using a key
generated by the cdsso_key_gen utility. You must "synchronize" this key by
sharing the key file with each plug-in enhanced Web server in each participating
domain. Each participating plug-in server in each domain needs to use the same
key.

Note: The creation and distribution of key files is not a part of the Security Access
Manager CDSSO process.

The cdsso_key_gen utility requires that you specify the location (absolute
pathname) of the key file when you run the utility:

UNIX: # cdsso_key_gen absolute-pathname

Windows: MSDOS> cdsso_key_gen absolute-pathname

Enter this key file location in the [cdsso-domain-keys] stanza of the pdwebpi.conf
configuration file of the participating plug-in server in each domain. The
[cdsso-domain-keys] stanza derives its name from the pdwpi-cdsso-module name
defined in the [modules] stanza. It takes the form [cdsso-module-name-domain-
keys]. The domain keys can be specified on a per virtual host basis by creating a

Chapter 7. Cross-domain sign-on solutions 167

[cdsso-module-name-domain-keys:virtual-host-name] stanza. The format of the entry
includes the domain name and the key file location:
[cdsso-domain-keys]
domain-name = keyfile-location

Domain A Configuration Example:
[cdsso-domain-keys]
www.domainB.com = pathname/A-B.key

Domain B Configuration Example:
[cdsso-domaina-keys]
www.domainA.com = pathname/A-B.key

In the above example, the A-B.key file would be generated on one machine
(Plug-in A, for example) and manually (and securely) copied to the other machine
(Plug-in B, for example).

Configuring the token time stamp

The token contains a configurable time stamp that defines the lifetime of the
authentication token. Once the time stamp has expired, the token is considered
invalid and is not used. The time stamp is used to help prevent replay attacks by
setting a value short enough to prevent the token from being stolen and replayed
within its lifetime.

The authtoken-lifetime parameter, located in the [cdsso] stanza of the
pdwebpi.conf configuration file, sets the token lifetime value. The value is
expressed in seconds. The default value is 180:
[cdsso]
authtoken-lifetime =180

This value may be overriden on a per-virtual host basis. You must take into
account any clock skew between the participating domains.

Including credential attributes in the authentication tokens

You can include credential attributes in the CDSSO tokens by specifying them in
the [cdsso-token-attributes] stanza of the plug-in configuration file. The attributes
to be included can be specified on a peer-to-peer or per-domain basis. The
credential attributes listing in this stanza is only relevant when the default SSO
token creation and consumption libraries are in use. If you do not require
credential attributes in CDSSO vouch-for tokens, then you can leave this stanza
empty.

The default name of this stanza is derived from the module name for the
pdwpi-cdsso-module defined in the [modules] stanza. It is of the form
[cdsso_module_name-token-attributes].

The values in the [cdsso-token-attributes] stanza are default across all virtual hosts
and can be overridden on a per virtual-host basis by creating a
[cdsso_module_name-token-attributes:virtual_host] stanza.

The format of the entries is: domain_name = pattern1, pattern2, ... pattern n.

168 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Credential attributes matching the specified patterns for a target host or domain
are included in CDSSO vouch-for tokens constructed for that target host or
domain. Only a single value for each attribute is used, and only string values are
supported. Other types of credential attribute values are ignored. Patterns can be
specified using the pattern matching characters explained in Appendix F, “Special
characters allowed in regular expressions,” on page 295.

For example:
[cdsso-token-attributes]
ibm.com = attrprefix_*, *name*
tivoli.com = *_attrsuffix, some_exact_attribute

A default set of attributes can be configured using a <default> entry in this stanza.
Such a default set of attributes is used when there is no other entry matching a
particular target host. If the <default> entry is not present, then no attributes will
be included by default.

Accepting and rejecting credential attributes from CDSSO
authentication tokens

You can specify the credential attributes to accept and those to reject from
incoming CDSSO authentication tokens by specifying the values in the
[cdsso-incoming-attributes] stanza.

Unlike the outgoing attributes configuration, incoming attributes cannot be
configured on a per-peer or per-domain basis. Only one set of attribute patterns
can be configured, and these patterns will be applied to incoming tokens
regardless of source. This processing only takes place if the default SSO token
creation and consumption libraries are in use.

The default name of this stanza is derived from the module name for the
pdwpi-cdsso-module defined in the [modules] stanza. It is of the form
[cdsso_module_name-incoming-attributes]. The values in this stanza are default
across all virtual hosts. However, they may be overridden on a per virtual-host
basis by configuring a [cdsso_module_name-incoming-attributes:virtual_host] stanza.

The format of entries in this stanza is:
attribute_pattern = preserve|refresh

Attributes in CDSSO tokens that match a refresh entry are removed from the token
before the CDMF library is called to map the remote user into the local domain.
Attributes matching a preserve entry, or matching none of the entries, are retained.
If no entries are configured, then all attributes are retained.

Specify the sso-create and sso-consume libraries

To specify sso-create and sso-consume libraries, edit the plug-in configuration file.
In the [authentication-mechanisms] stanza, uncomment the entry for sso-create
and sso-consume and add the name of the plug-in failover cookie library
appropriate for the operating system type.

The default configuration file entry is:
[authentication-mechanisms]
sso-create = /opt/pdwebrte/lib/ibssocreate.so
sso-consume = /opt/pdwebrte/lib/libssoconsume.so

Chapter 7. Cross-domain sign-on solutions 169

Alternatively, when you have developed an external authentication mechanism
library that implements a customized version of sso-create and sso-consume
functionality, insert the name of the custom external authentication mechanism as
the value for the configuration file keyword. For example, if you developed a
custom external authentication mechanism for sso-create, enter the absolute path
name:
[authentication-mechanisms]
sso-create = /dir_name/custom_cdas_sso-create.so

Expressing CDSSO links

Links to resources on a secondary secure domain must contain a special CDSSO
expression which is configured using the uri parameter in the [cdsso] stanza on
the configuration file. The default value is /pkmscdsso:
/pkmscdsso?destinationURL

When configured as a post-authorization module, requests to /pkmscdsso?remote-
uri will redirect the client to, remore-uri?PD-REFERER=this-host
&argument=authentication-token

The name of the query string argument specifying the authentication token is
configured using the cdsso-argument parameter in the [cdsso] stanza of the
pdwebpi.conf configuration file. The default value is PD-ID. This may be overriden
on a per-virtual host basis.

The default value, PD-ID, of the cdsso-argument parameter should only be
changed when a custom SSO create/consume library is in use. When using the
shipped SSO create/consume libraries, the default, PD-ID, must be used.

Protecting the authentication token

While the authentication token does not contain authentication information (such
as username and password), it does contain a user identity that is trusted within
the receiving domain. The token itself must therefore be protected against theft and
replay.

The token is protected against theft off the wire through the use of SSL to secure
communications between the plug-in enhanced Web servers and the users. The
token could conceivably be stolen from the user's browser history. The time stamp
on the token should be short enough to make it unlikely that the token could be
stolen and replayed during the lifetime of the token.

However, a token that has expired with respect to its time stamp is still vulnerable
to cryptographic attacks. If the key used to encrypt the token is discovered or
otherwise compromised, a malicious user could build their own tokens.

These tokens could then be inserted into a "pseudo-CDSSO flow". They would be
indistinguishable from real authentication tokens to the plug-in servers
participating in the CDSSO domain. For this reason, the keys used to protect the
tokens must also be carefully managed, and changed on a regular basis.

170 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

e-Community single sign-on

IBM Security Access Manager Plug-in for Web Servers e-community single sign-on
functionality allows users to access resources across multiple servers in multiple
domains without requiring re-authentication.

An "e-community" is a group of distinct domains (Security Access Manager or
DNS) that participate in a business relationship. These participating domains can
be configured as part of one business (and perhaps using different DNS names for
geographic reasons) or as different businesses with a shared relationship (for
example, company headquarters, a life insurance company, and a financial
management company).

In either scenario, there is always one domain that is designated the "home" or
"owner" domain. In the case of participating businesses, the home domain owns
the business agreements that govern the e-community.

In both scenarios, authentication information about the users who participate in the
e-community (including the user names and passwords used for authentication) is
maintained in the home domain. This arrangement allows a single point of
reference for administration issues, such as help desk calls within the e-community
that all refer to the home domain.

Alternatively, you can use the Security Access Manager Web Portal Manager to
delegate the management of this information such that participating domains have
responsibility for the administration of their own users.

The home domain "owns" the users – that is, it controls the user's authentication
information. Regardless of where a user makes a request for resources, the home
domain is always where the user must be authenticated.

Authentication occurs against a master authentication server (MAS) – a server (or
set of replica servers) that is located in the home domain and configured to
authenticate all users. The duty of the MAS should be restricted to providing
authentication services. The MAS should not contain resources that are available to
users.

After a user has successfully authenticated to the MAS, the MAS generates a
vouch-for token. This token is passed back to the server where the user is making
the request. The server treats this vouch-for token as proof that the user has
successfully authenticated to the MAS and can participate in the e-community.

The transfer of information between e-community domains is described in detail in
the section “e-Community single sign-on process flow” on page 172.

e-Community single sign-on features and requirements

e-Community single sign-on has the following features and requirements:
v e-Community functionality supports access using direct URLs (bookmarks) to

resources.
v e-Community implementation requires a consistent configuration across all

plug-ins in all domains participating in the e-community.
v All users who are participating in the e-community authenticate against a single

master authentication server (MAS) located in the home domain.

Chapter 7. Cross-domain sign-on solutions 171

v The e-community implementation allows for "local" authentication in remote
domains if the user does not have a valid account with the MAS.
A user who fails authentication with the MAS when requesting a resource in a
non-MAS (but participating) domain is given the option to authenticate to the
local server where the request is being made.

v The MAS (and eventually other selected servers in the remote domains)
vouch-for the user's authenticated identity.

v Domain-specific cookies are used to identify the server that can provide
vouch-for services. This allows servers in a remote domain to request vouch-for
information locally. The encrypted contents of e-community cookies do not
contain user identity or security information.

v Special tokens are used to pass encrypted "vouched for" user identities. The
vouch-for token does not contain actual user authentication information.
Integrity is provided by shared secret key (triple-DES). The token contains a
time-out (lifetime) value to limit the duration of the token validity.

v The e-community implementation is supported on both HTTP and HTTPS.
v Configuration for e-community is set in the pdwebpi.conf file of each

participating plug-in.

e-Community single sign-on process flow

An e-community consists of a plug-in-enhanced master authentication server
(MAS) and additional plug-in-enhanced servers acting as an e-community. The
e-community single sign-on solution can also interoperate with WebSEAL protected
resources.

The e-community implementation is based on a vouch-for system. Normally, when
unauthenticated users request a resource through the plug-in they are prompted
for authentication information. In an e-community configuration, the plug-in server
identifies a vouch-for server and requests verification from this vouch-for server
that the user has authenticated. The vouch-for server stores valid credential
information for the user.

For the user's first request, the vouch-for server is always the MAS. The MAS
continues to serve as the vouch-for server for resources located in the home
domain. As the user continues with resource requests across the e-community, an
individual server in each remote domain can build its own credential for the user
(based on user identity information from the MAS) and assume the role of
vouch-for server for resources in its domain.

172 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The example above shows two domains, IBM domain and Lotus® domain, that
exist within an e-community. The following processes take place the first time a
user logs on to a secure Web site within the e-community:
1. The user requests access to a resource on the Web server ww1.ibm.com. The

plug-in intercepts the request and confirms that ww1.ibm.com is configured as
part of the Tivoli-IBM-Lotus e-community. The MAS server in the e-community
is identified from the ww1.ibm.com configuration.

2. The request is passed to the MAS - www.tivoli.com. The MAS authenticates the
request on behalf of ww1.ibm.com and issues a vouch-for token that becomes
the user's e-community identity. The user identity information in the token is
encrypted.

3. The MAS sends the vouch-for token to ww1.ibm.com. ww1.ibm.com treats this
vouch-for token as proof that the user has successfully authenticated to the
MAS and can now access the requested resource based on normal authorization
controls.

The e-community cookie

The e-community cookie has these characteristics:
v The e-community cookie is a domain-specific cookie set by one plug-in, stored in

the memory of the user's browser, and transmitted to other plug-in instances (in
the same domain) in subsequent requests.

v The domain-specific cookie contains the name of the vouch-for server, the
e-community identity, a location (URL) of the vouch-for server and functionality,
and a lifetime value. The cookie contains no user information.

v The e-community cookie allows servers in participating domains to request
vouch-for information locally. The e-community cookie for the domain where the
MAS is located plays a less significant role.

v The cookie has a lifetime (timeout) value that is set in the pdwebpi.conf
configuration file. This lifetime value specifies how long a remote server is able

IBM-Lotus
e-community

www.tivoli.com

plug-in

ww1.lotus.com

p
lu

g
-i
nwww.tivoli.com

plug-in

ww1ibm.com

p
lu

g
-i
n

www.tivoli.com

plug-in

ww2.ibm.com

p
lu

g
-i
n

wwwibm.com

plug-in

MAS

www.ibm.com

plug-in

www.tivoli.com

plug-in

ww2.lotus.com

p
lu

g
-i
n

IBM Domain Lotus Domain

Browser

1

2 3

Figure 13. Logging into an e-community

Chapter 7. Cross-domain sign-on solutions 173

to provide vouch-for information for the user. When the cookie lifetime has
expired, the user must be redirected to the MAS for authentication.

v The cookie is cleared from memory when the browser is closed. If the user logs
out of a specific domain, the e-community cookie is overwritten as empty. This
action effectively removes it from the browser.

The vouch-for request and reply

The e-community vouch-for operation requires dedicated functionality accessed
through two specially constructed URLs: the vouch-for request and the vouch-for
reply. These URLs are constructed during the e-community vouch-for HTTP
re-directs based on the configuration information in pdwebpi.conf.

The vouch-for request

The vouch-for request is triggered when a user requests a resource from a target
server (configured for e-community) that contains no credential information for
that user. The server sends an HTTP re-direct to the vouch-for server (either the
MAS or a server identified in an e-community cookie).

The vouch-for request contains the following information:
https://vouch_for_server/pkmsvouchfor?ecommunity_name&target_url

The receiving server checks the ecommunity_name to validate the e-community
identity. The receiving server uses the target_url in the vouch-for reply to re-direct
the browser back to the originally requested page.

The pkmsvouchfor vouch-for URL is configurable.

For example:
https://www.tivoli.com/pkmsvouchfor?companyABC&https://ww2.lotus.com/index.html

The vouch-for reply

The vouch-for reply is the response from the vouch-for server to the target server.

The vouch-for reply contains the following information:
https://target_url?PD-VFHOST=vouch_for_server&PD-VF=encrypted_token

The PD-VFHOST parameter identifies the server that performed the vouch-for
operation. The receiving (target) server uses this information to select the correct
key required to decrypt the vouch-for token (PD-VF). The PD-VF parameter
represents the encrypted vouch-for token.

For example:
https://ww2.lotus.com/index.html?PD-VFHOST=www.tivoli.com&PD-VF=3qhe9fjkp...ge56wgb

The vouch-for token

In order to achieve cross-domain single sign-on, some user identity information
must be transmitted between servers. This sensitive information is handled using a
re-direct that includes the identity information encrypted as part of the URL. This
encrypted data is called a vouch-for token.

174 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

v The token contains the vouch-for success or failure status, the user's identity (if
successful), the fully qualified name of the server that created the token, the
e-community identity, and a creation time value.

v The holder of a valid vouch-for token can use this token to establish a session
(and set of credentials) at a server without explicitly authenticating to that
server.

v The token is encrypted using a shared triple-DES secret key so that its
authenticity can be verified.

v Encrypted token information is not stored on the browser.
v The token is passed only once. The receiving server uses this information to

build user credentials in its own cache. The server uses these credentials for
future requests by that user during the same session.

v The token has a lifetime (timeout) value that is set in the pdwebpi.conf
configuration file. This value can be very short (seconds) to reduce the risk of a
re-play attack.

Encrypting the vouch-for token

IBM Security Access Manager Plug-in for Web Servers must encrypt the
authentication data placed in the token using a key generated by the
cdsso_key_gen utility located in the pdwebrte/bin directory. You must
"synchronize" this key by sharing the key file with each plug-in server in each
participating domain. Each participating plug-in server in each domain needs to
use the same key.

Note: The creation and distribution of key files is not a part of the Security Access
Manager e-community process. You must manually and securely copy keys to each
participating server.

The cdsso_key_gen utility requires that you specify the full path to the utility and
the location (absolute pathname) of the key file when you run the utility:

UNIX:
/opt/pdwebrte/bin/cdsso_key_gen absolute_pathname

Windows:
MSDOS> install_path/pdwebrte/bin/cdsso_key_gen absolute_pathname

The encryption keys are configured in the [ecsso-domain-keys] stanza of the
pdwebpi.conf configuration file. Details of this configuration are covered in the
next section, “Configuring an e-community.”

Configuring an e-community
This section reviews all the configuration parameters required for an e-community
implementation. These parameters are in the pdwebpi.conf file. You must carefully
configure this file for each participating plug-in in the e-community.

Enabling and Disabling e-Community Members
The [common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods. To enable a plug-in server to operate within an
e-community, assign the term ecsso to the authentication and pre-authzn
parameters as in the following:
[common-modules]
authentication = ecsso
pre-authzn = ecsso

Chapter 7. Cross-domain sign-on solutions 175

When configuring for non-MAS e-community members, ecsso authentication must
take precedence over other authentication schemes.Ecsso must be specified before
other authentication schemes in the list of authentication modules. If the ecsso
module is to take precedence over an authentication module specified with a
higher authentication level than the default of 1, then the ecsso module itself must
be configured with at least the same authentication level.

The [modules] stanza in the pdwebpi.conf configuration file defines all available
authentication mechanisms and their associated shared library names. Ensure that
the entry for e-community SSO exists:
[modules]
ecsso = pdwpi-ecsso-module

e-community-name
The e-community-name parameter identifies the name of the e-community the
server belongs to. For example:
[ecsso]
e-community-name = companyABC

The e-community-name value must be the same for all members of an
e-community.

is-master-authn-server
This parameter identifies whether this server is the MAS or not. Possible values are
yes or no. The parameter would be set as follows for the e-community MAS:
[ecsso]
is-master-authn-server = yes

Multiple plug-ins can be configured to act as master authentication servers and
then placed behind a load balancer. In this scenario, the load balancer is recognized
as the MAS by all other plug-in servers in the e-community.

If is-master-authn-server is set to yes, then the server accepts vouch-for requests
from other plug-in instances whose e-community-name is the same and whose
domain keys are listed in the [ecsso-domain-keys] stanza.

master-authn-server
If the is-master-authn-server parameter is set to no, then the master-authn-server
parameter must be uncommented and specified. The parameter identifies the fully
qualified domain name of the e-community MAS. For example:
[ecsso]
master-authn-server = www.ibm.com

master-http-port
Assign the port number that the master authentication server uses to receive HTTP
requests. If the port number is not the standard port 80 then the non-standard port
number must be specified here.
[ecsso]
master-http-port = port_number

master-https-port
Assign the port number that the master authentication server uses to receive
HTTPS requests. If the port number is not the standard port 443 then the
non-standard port number must be specified here.
[ecsso]
master-https-port = port_number

176 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

vf-token-lifetime
This parameter sets the lifetime timeout value in seconds, of the vouch-for token.
This value is checked against the creation time stamped on the cookie. The default
value is 180 seconds. You must take into account clock skew between participating
servers. By default the parameter is set as:
[ecsso]
vf-token-lifetime = 180

vf-url
This parameter specifies the vouch-for URL The value must begin with a
forward-slash (/). The default setting value is:
[ecsso]
vf-url = /pkmsvouchfor

You can also express an extended URL:
vf-url = /ecommA/pkmsvouchfor

vf-argument
The value of the vf-argument parameter is the argument name of the vouch-for
token as it appears in the vouch-for reply. The default value of PD-VF should only
be changed if custom create and consume modules are in use and a different
argument name is used to represent the vouch-for token.

The value is used to construct vouch-for replies by the MAS and to distinguish
incoming requests as ones with couch-for information by participating ECSSO
servers.
[ecsso]
vf-argument = PD-VF

allow-login-retry
A MAS that employs a username/password-based authentication scheme has two
options when a user has performed an unsuccessful logon: it can prompt the users
to input their credentials again, or it can immediately redirect users back to the
server they originally attempted to access without vouching for the user. In the
later case, users are forced to authenticate directly to the subordinate server. The
allow-login-retry parameter controls this behavior at the MAS. This parameter is
applicable only to the configuration of the MAS within an ecsso community.

Note: Users can attempt to reset an expired password.

Other login failures occurring at the MAS, such as account locked, cause an
immediate redirection back to the subordinate server irrespective of the value of
the allow-login-retry parameter. By default the parameter is set as:
[ecsso]
allow-login-retry = true

use-utf8
This parameter controls the string encoding within the ECSSO vouch-for tokens
and e-community cookies. The value of this parameter only affects vouch-for
tokens created and consumed by the default SSO create and consume libraries.
[ecsso]
use-utf8 = true

disable-ec-cookie
When set to yes, this option will disable the use of the e-community cookie, and
only the MAS will generate vouch-for tokens. This will force the single-sign-on

Chapter 7. Cross-domain sign-on solutions 177

process to always use the MAS, allowing the MAS to detect all hosts that sign on
across the e-communities. This supports customers who wish to construct their
own eCSSO Single Sign Off solution.

Disabling eCSSO cookies may provide extra security by ensuring that any
compromise of a user's session in a slave domain will not result in impersonation
of that user in either the master domain or other slave domains.
[ecsso]
use-utf8 = true

no-mas-logout-uri
This configuration entry is used to define the URI of a new form of the
/pkmslogout page.

This page operates identically to /pkmslogout, except it does not redirect to the
MAS's /pkmslogout page after logging out of the current host. Instead it simply
performs the normal logout success process and returns the page, as defined by
the no-mas-logout-success configuration entry. This supports customers wanting
to use alternate methods of signing out all the hosts at the MAS.

Instead of using the technique by which each host to be signed out is visited
sequentially by the MAS, all hosts could be visited simultaneously using features
of HTML like iframes. A single page of iframes, one for each host to sign out,
could be generated at the MAS. Each form would access /pkmslogout-nomas of
each host. If they accessed /pkmslogout of each host, then each iform would be
redirected back to the MAS, making it difficult to control the ensuing /pkmslogout
recursion.

This single page signout method would be more robust in the case of a single host
failing to respond. If a single host failed using the sequential sign out process then
the sign out sequence would halt possibly leaving some hosts signed in.
[ecsso]
no-mas-logout-uri = /pkmslogout-nomas

no-mas-logout-success
This configuration entry is used to define the action which is taken by the server
after the client has been successfully logged out through the no-mas-logout-uri.

The entry should correspond to either a macro HTML file, which is relative to the
translated PDWebPI HTML directory (for example, /opt/pdwebpi/nls/html/C/utf-
8), or a valid redirect URI. The redirect URI can be either absolute or
server-relative, and can also contain macros. Be aware, however, that some clients
impose restrictions on the maximum length of a URI; care should be taken to
include only those URI elements that are required.
[ecsso]
no-mas-logout-success = logout_success.html

ecsso Domain Keys
Defined in the[ecsso-domain-keys] stanza of the configuration file are the locations
of the key files required for encrypting and decrypting tokens between the MAS
and participating servers in remote domains. Configuration of the MAS involves
defining the keys for each domain for which it is the master. Configuration of
e-community members other than the MAS involves defining the key for the
domain and for the MAS. You must specify the fully qualified domain names for
the servers and the absolute path names for the key file locations.

178 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The following MAS configuration example provides the MAS, located within the
ibm.com domain, with key files for communicating with two remote domains:
[ecsso-domain-keys]
ibm.com = /abc/xyz/ibm.key
lotus.com = /abc/xyz/lotus.key
ibm = /abc/xyz/ibm.key

Note: In the preceding example, it is crucial to have ibm.key for data exchange
between servers in the ibm domain.

Configuration for servers in the domains involves specifying the MAS domain and
the corresponding key used to exchange information with the MAS. A key is also
required for data exchange between servers in the domain. For example the
[ecsso-domain-keys] stanza for a server in a domain participating in an
e-community may look like this:
[ecsso-domain-keys]
#the key for data exchange between the MAS (ibm.com)
#and the ibm.com domain servers
ibm.com = /abc/xyz/ibm.key
#the key for data exchange between servers in the ibm.com domain
ibm.com = /abc/xyz/ibm.key

Failure to configure ecsso keys correctly generates warnings within the plug-in log
file.

Including credential attributes in the vouch-for tokens

You can include credential attributes in the eCSSO vouch-for tokens by specifying
them in the [ecsso-token-attributes] stanza of the plug-in configuration file. The
attributes to be included can be specified on a peer-to-peer or per-domain basis.
The credential attributes listing in this stanza is only relevant when the default
SSO token creation and consumption libraries are in use. If you do not require
credential attributes in eCSSO vouch-for tokens, then you can leave this stanza
empty.

The default name of this stanza is derived from the module name for the
pdwpi-ecsso-module defined in the [modules] stanza. It is of the form
[ecsso_module_name-token-attributes].

The values in the [ecsso-token-attributes] stanza are default across all virtual hosts
and can be overridden on a per virtual-host basis by creating a
[ecsso_module_name-token-attributes:virtual_host] stanza.

The format of the entries is: domain_name = pattern1, pattern2, ... pattern n.

Credential attributes matching the specified patterns for a target host or domain
are included in eCSSO vouch-for tokens constructed for that target host or domain.
Only a single value for each attribute is used, and only string values are
supported. Other types of credential attribute values are ignored. Patterns can be
specified using the pattern matching characters explained in Appendix F, “Special
characters allowed in regular expressions,” on page 295.

For example:
[ecsso-token-attributes]
ibm.com = attrprefix_*, *name*
tivoli.com = *_attrsuffix, some_exact_attribute

Chapter 7. Cross-domain sign-on solutions 179

A default set of attributes can be configured using a <default> entry in this stanza.
Such a default set of attributes is used when there is no other entry matching a
particular target host. If the <default> entry is not present, then no attributes will
be included by default.

Accepting and rejecting credential attributes from vouch-for
tokens

You can specify the credential attributes to accept and those to reject from
incoming vouch-for tokens by specifying the values in the [ecsso-incoming-
attributes] stanza. Unlike the outgoing attributes configuration, incoming attributes
cannot be configured on a per-peer or per-domain basis.

Only one set of attribute patterns can be configured, and these patterns will be
applied to incoming tokens regardless of source. This processing only takes place if
the default SSO token creation and consumption libraries are in use. The default
name of this stanza is derived from the module name for the pdwpi-ecsso-module
defined in the [modules] stanza. It is of the form [ecsso_module_name-incoming-
attributes].

The values in this stanza are default across all virtual hosts. However, they may be
overridden on a per virtual-host basis by configuring a [ecsso_module_name-
incoming-attributes:virtual_host] stanza.

The format of entries in this stanza is:
attribute_pattern = preserve|refresh

Attributes in eCSSO vouch-for tokens that match a refresh entry are removed from
the token before the CDMF library is called to map the remote user into the local
domain. Attributes matching a preserve entry, or matching none of the entries, are
retained. If no entries are configured, then all attributes are retained.

Specify the sso-create and sso-consume libraries

To specify sso-create and sso-consume libraries, edit the plug-in configuration file.
In the [authentication-mechanisms] stanza, uncomment the entry for sso-create
and sso-consume and add the name of the plug-in failover cookie library
appropriate for the operating system type.

The default configuration file entry is:
[authentication-mechanisms]
sso-create = /opt/pdwebrte/lib/ibssocreate.so
sso-consume = /opt/pdwebrte/lib/libssoconsume.so

Alternatively, when you have developed a external authentication mechanism
library that implements a customized version of sso-create and sso-consume
functionality, insert the name of the custom external authentication mechanism as
the value for the configuration file keyword. For example, if you developed a
custom external authentication mechanism for sso-create, enter the absolute path
name:
[authentication-mechanisms]
sso-create = /dir_name/custom_cdas_sso-create.so

180 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Configuring e-community single sign-on - an example

In the following example there are two e-communities configured – lotus-domino
and ibm-db2 – with a single MAS authenticating the requests for both
communities.

The following conditions apply for this example:
v www.ibm.com is the MAS for both e-communities.
v Two distinct domains (one server in each domain for simplicity) exist within the

lotus-domino e-community – domino.com and lotus.com. Users accessing one of
these domains can access the other without the need to re-authenticate as all
access is granted via the MAS.

v The ibm-db2 e-community contains two distinct domains – ibm.com and
db2.com. Users accessing one of these domains can access the other without the
need to re-authenticate.

v Users accessing one of the ibm.com servers can access the other using a
vouch-for token. Single sign-on in this case is achieved without the need for the
MAS to grant access.

In the above example, the following configuration options apply:

Configuration of the MAS – www.ibm.com
As the MAS is the control center for more than one e-community, two
distinct instances of the ecsso module need to be configured and the
e-community names that the MAS controls need to be defined. The MAS
needs to have specified all the keys of the main domains within all the
communities it controls. Configuration is set as follows:
[modules]
ecsso1 = pdwpi-ecsso-module
ecsso2 = pdwpi-ecsso-module

[common-modules]
authentication = ecsso1
authentication = ecsso2

pre-authzn = ecsso1
pre-authzn = ecsso2

www.tivoli.com

plug-in

MAS

lotus-domino
e-community

www.ibm.com

plug-in

www.tivoli.com

plug-in

www.domino.com
p
lu

g
-i
n www.tivoli.com

plug-in

www.lotus.com

p
lu

g
-i
n

ibm-db2
e-community

www.tivoli.com

plug-in

ww1ibm.com

p
lu

g
-i
n

www.tivoli.com

plug-in

www.db2.com

p
lu

g
-i
n

www.tivoli.com

plug-in

ww2.ibm.com

p
lu

g
-i
n

Figure 14. e-Community single sign-on configuration example

Chapter 7. Cross-domain sign-on solutions 181

[ecsso1]
e-community-name = lotus-domino
is-master-authn-server = yes
.....etc

[ecsso2]
e-community-name = ibm-db2
is-master-authn-server = yes
.....etc

[ecsso1-domain-keys]
one key for each domain the MAS controls
domino.com = /abc/ibmkeys/ibm-domino.key
lotus.com = /abc/ibmkeys/ibm-lotus.key
db2.com = /abc/ibmkeys/ibm-db2.key
ibm.com = /abc/ibmkeys/ibm.key

Configuration of www.domino.com
[modules]
ecsso = pdwpi-ecsso-module

[common-modules]
authentication = ecsso

pre-authzn = ecsso

[ecsso]
e-community-name = lotus-domino
is-master-authn-server = no
master-authn-server = www.ibm.com
.....etc

[ecsso-domain-keys]
#key for encrypting/decrypting data
#between servers in the domino.com domain
domino.com = /abc/domino-keys/domino.key
#key for encrypting/decrypting data between
#servers in the domino.com domain and the MAS
ibm.com = /abc/domino-keys/ibm-domino.key

Configuration of www.lotus.com
The configuration parameters for achieving single sign-on to
www.lotus.com will be identical to those configured for www.domino.com
except the domain keys will be different. Domain keys configuration for
www.lotus.com would be as follows:
[ecsso-domain-keys]
#key for encrypting/decrypting data
#between servers in the lotus.com domain
lotus.com = /abc/lotus-keys/lotus.key
#key for encrypting/decrypting data
#between servers in the lotus.com domain and the MAS
ibm.com = /abc/lotus-keys/ibm-lotus.key

Configuration of www.db2.com
[modules]
ecsso = pdwpi-ecsso-module

[common-modules]
authentication = ecsso

pre-authzn = ecsso

[ecsso]
e-community-name = ibm-db2
is-master-authn-server = no
master-authn-server = www.ibm.com

182 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

.....etc

[ecsso-domain-keys]
#key for encrypting/decrypting data
#between servers in the db2.com domain
db2.com = /abc/db2-keys/db2.key
#key for encrypting/decrypting data between
#servers in the db2.com domain and the MAS
ibm.com = /abc/db2-keys/ibm-db2.key

Configuration of ww1.ibm.com
The e-community single sign-on configuration for ww1.ibm.com is
identical to that of www.db2.com. Two keys are required, one for
encrypting/decrypting data between the MAS and the ibm.com domain
and a key for encrypting/decrypting data between servers within the
ibm.com domain (i.e. ww1.ibm.com and ww2.ibm.com in this example).
[ecsso-domain-keys]
ibm.com = /abc/ibm-keys/ibm.key

Configuration of ww2.ibm.com
The definition of keys for ww2.ibm.com will be identical to that for
ww1.ibm.com.
[ecsso-domain-keys]
ibm.com = /abc/ibm-keys/ibm.key

Chapter 7. Cross-domain sign-on solutions 183

184 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 8. Application integration

IBM Security Access Manager Plug-in for Web Servers supports third-party
application integration through environment variables and dynamic URL
capability. The plug-in extends the range of environment variables and HTTP
headers to enable third-party applications to perform operations based on a client's
identity. In addition, the plug-in can provide access control on dynamic URLs, such
as those that contain query text.

The following topics are covered in this chapter:
v “Maintaining session state between the client and back-end applications”
v “Providing access control to dynamic URLs” on page 187

Maintaining session state between the client and back-end
applications

As described in Chapter 4, “Managing session state,” on page 115, the plug-in can
maintain session state with clients over HTTP and HTTPS using a variety of
methods. The plug-in can also supply session information to back-end applications.
This allows back-end applications to identify user sessions and request the plug-in
to terminate them when required.

Without an established session state between client and server, the communication
between the client and the server must be renegotiated for each subsequent
request. Session state information improves performance by eliminating repeated
closing and re-opening of client/server connections. The client can log in once and
make numerous requests without performing a separate login for each request.

Enabling user session ID management

The add-session-id-to-cred entry in the [performance] stanza of the plug-in
configuration file enables or disables the creation of a unique user session ID in the
client credential. The default value is true (enabled):
[performace]
add-session-id-to-cred = true

To disable the creation of unique user session IDs, set add-session-id-to-cred to
false.

The unique user session ID is stored in a user's credential as an extended attribute
with a name and value:
tagvalue_user_session_id = user-session-id

In the credential itself, the credential extended attribute name (user_session_id)
appears with a "tag value" prefix that is configurable using the tag-value-prefix
parameter in the [pdweb-plugins] stanza of the configuration file. Specifying a
prefix prevents any conflicts with other existing information in the credential.

The value of the user session ID is a string that uniquely identifies a specific
session for an authenticated user. The user session ID is a MIME-64 encoded string

© Copyright IBM Corp. 2000, 2012 185

that includes the plug-in instance name (to support multiple plug-in instances) and
the standard plug-in session ID for the user.

A single user that logs in multiple times (for example, from different machines) has
multiple plug-in session IDs. Because the user session ID is based on the plug-in
session ID, there exists a one-to-one mapping between them. The unique user
session ID is stored as an attribute in the user's credential. This allows the value to
be passed across a junction as a HTTP header (using tag-value functionality) and
made available to a back-end application.

Inserting credential data into the HTTP header

The goal of user session management is to provide the unique user session ID to
the application server. This goal is accomplished by configuring the
HTTP-Tag-Value extended attribute on the object.

Use the pdadmin object modify set attribute command to set an extended
attribute on an object in the plug-in protected object space.
pdadmin> object modify object_name set attribute attribute_name attribute_value

The attribute_name command option allows the plug-in to perform a specific type
of functionality. For example, specifying the HTTP-Tag-Value attribute enables the
plug-in to extract a value from a credential extended attribute and send the value
to the server in a HTTP header.

The value of the HTTP-Tag-Value extended attribute uses the following format:
credential_extended_attribute_name=http_header_name

For user session ID data, the credential_extended_attribute_name entry is the same as
the user_session_id extended attribute name specified in the configuration file but
without the configured prefix. The entry is not case-sensitive. The value of this
extended attribute contains the unique user session ID.

The http_header_name entry specifies the name of the HTTP header used to deliver
the data. In this example, a header called PD-USER-SESSION-ID is used:
pdadmin> object modify /PDWebPI/host set attribute \
HTTP-Tag-Value user_session_id=PD-USER-SESSION-ID

When the plug-in processes a user request to a back-end application server, it looks
for any HTTP-Tag-Value extended attributes configured on the object.

In this example, the plug-in looks at the credential of the user making the request,
extracts the user session ID value from the tagvalue_user_session_id extended
attribute in the credential, and places the value in an HTTP header as:
PD-USER-SESSION-ID:user_session_id_number

In summary:

Value of HTTP-Tag-Value attribute
set on the plug-in object:

user_session_id=PD-USER-SESSION-ID

Attribute name and value as they
appear in the user credential:

tagvalue_user_session_id:user_session_id_number

HTTP header name and value: PD-USER-SESSION-ID:user_session_id_number

If the back-end application is a CGI application, the CGI specification dictates that

186 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

HTTP headers are made available to CGI programs as environment variables in the
form:
HTTP_HTTP_header_name

For example:
HTTP_PD-USER-SESSION-ID=user_session_id

Terminating user sessions

User session ID management functionality can be used to terminate user sessions
given a unique user session ID or a Security Access Manager username. These
commands can be run from the PDADMIN command line (using server task) but
they are intended for use by a back-end application through the PDAdmin API.
Terminating a session using the User Session ID causes the plug-in to discard the
single session that the User Session ID identifies. Other sessions from the same
user can continue.

Terminating using the Security Access Manager username causes the plug-in to
discard ALL sessions that are owned by the given username. This command may
end many sessions if the user is logged in multiple times from different locations
or different browsers.

A user can initiate the termination of the current session through the pkmslogout
command. Additionally, the information in the User Session ID allows
administrators and back-end applications to track and manage users. Described
below is two methods for terminating user sessions at an administration level:

An administrator can use the pdadmin utility to terminate a single user session
using the user ID.
pdadmin> server task pdwebpi-plugin-instance-name terminate all_sessions user-id

Using the all-sessions command as shown above, each session for the specified
user is terminated on all virtual-hosts on the machine.

This command can be refined to terminate user sessions for a particular user on a
particular virtual host using the -vhost parameter as in the following (entered as
one line):
pdadmin> server task pdwebpi-plugin-instance-name terminate all_sessions
user-id -vhost "virtual-host-name"

Providing access control to dynamic URLs

IBM Security Access Manager Plug-in for Web Servers can apply authorization to
Web objects based on a pattern match of the entire request string rather than just
the object's URL. This is useful for Web applications that dynamically generate
URLs in response to each user request that still require strong protection from
unwanted use or access. This is also useful for assigning different permissions to
the different methods of scripts.

For example, the query string GET /cgi-bin/servercontrol?action=showstatus
would have different security requirements to GET /cgi-bin/
servercontrol?action=shutdown. Each of these requests may need to be
represented uniquely in the objectspace so that different policy can be applied to
each.

Chapter 8. Application integration 187

The dynurl module allows a set of patterns to be defined that are matched against
incoming requests. The patterns are matched against the entire request string so
matching on information in the query string is possible.

For each DynURL pattern, a Security Access Manager object is defined. This object
appears in the objectspace so that policy can be associated with it. At runtime, any
request that matches a dynurl pattern is authorized using the object associated
with the pattern rather than the object that represents the URL. By defining
different patterns that independently match different query strings, different
Security Access Manager objects can be used and different policy can be applied.

Note: Dynamic URL mapping functionality is incompatible with the plug-in's
unprotected resource cache entries as discussed in “Policy for unprotected
resources” on page 145.

Configuring dynamic URLs
The[common-modules] stanza in the pdwebpi.conf configuration file defines the
use of all authentication methods.

To enable pattern-matching of dynamic URLs for incoming requests, configure the
dynurl module as a pre-authorization module. Doing so allows the dynurl module
to change the requested object before the authorization engine is reached.
[common-modules]
...
pre-authzn = dynurl
...

Ensure that the entry for dynamic URLs exists in the [modules] stanza of the
pdwebpi.conf configuration file:
[modules]
...
dynurl = pdwpi-dynurl-module
...

The [dynurl] stanza, by default or the stanza name that matches the configured
module name, contains the definitions for the dynamic URL pre-authorization
module. This stanza can be overwritten on a per-virtual host basis, that is,
[dynurl:virtual-host].

The entries within the [dynurl] stanza are of the form object = pattern. Each entry is
on a separate line. The order of the list determines the order in which the rules are
processed. Entries which occur earlier in the stanza take precedence over entries
that occur later in the stanza. For example:
[dynurl]
/servershutdown = /servercontrol.asp\?*action=shutdown*
/serverreset =/servercontrol.asp\?*action=reset*
/helppages = *help.html

Note: The objects all start with a backslash /. The last entry in the preceding
configuration shows a second use of the dynurl module. In this case, the pattern
matches a set of URLs, which is any URLs ending in help.html.

Note: In this case, DynURL does a many-to-one mapping of URLs to Security
Access Manager objects. All requests for pages that are called help.html regardless
of their path is authorized against the same Security Access Manager object. This
might be useful in situations where files with similar names (that can be grouped

188 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

by a pattern) all have the same security requirements. However, each pattern that
is defined is matched against every request and so slows down every
authorization.

The use of the pattern *help.html might have security implications for scripts The
following sample request
/servercontrol.asp?action=some_other_action&pointless_variable
_used_to_evade_acl_attached_to_server_control.asp=help.html

matches the *help.html dynamic URL. Therefore, access is evaluated based on the
/helppages object rather than the /servercontrol.asp object. Similarly, a request
for
/someotherscript?action=someaction&other_var=help.html

is evaluated based on the /helppages object rather than the /someotherscript
object.

For a list of the special characters that are allowed in regular expressions that are
used in the forms single sign-on configuration file, see Appendix F, “Special
characters allowed in regular expressions,” on page 295.

In most cases, special characters are not required because the login page request is
a single identifiable URI. In some cases, you can use * at the end of the expression
so that any query data at the end of the URI does not prevent the login page from
being matched.

Chapter 8. Application integration 189

190 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Chapter 9. Authorization decision information retrieval

This chapter contains information that describes how IBM Security Access Manager
Plug-in for Web Servers can provide, or acquire, authorization decision information
(ADI) required to evaluate authorization rules that protect resources in the Security
Access Manager domain.

The following topics are covered in this chapter:
1. “Overview of ADI retrieval”
2. “Retrieving ADI from the plug-in client request” on page 192
3. “Retrieving ADI from the user credential” on page 194
4. “Supplying a failure reason” on page 194
5. “Configuring dynamic ADI retrieval” on page 195

Overview of ADI retrieval

The Security Access Manager authorization rules evaluator performs authorization
decisions based on Boolean logic applied to specific access decision information
(ADI). Detailed information on the construction of authorization rules (using
Boolean logic) and authorization decision information (ADI) can be found in the
IBM Security Access Manager for Web: Base Administration Guide.

ADI required for rules evaluation can be retrieved from the following sources:
v Authorization decision parameters provided to the authorization rule as ADI by

the authorization service.
Parameters include the target resource (protected object) and the requested
action on the resource. Refer to the IBM Security Access Manager for Web: Base
Administration Guide for further information on this topic.

v The user credential
The user credential is always included with the function call to the authorization
rules evaluator, so it is immediately available.

v The resource manager environment (application context)
A resource manager, such as the plug-in, can be configured to provide ADI from
its own environment. For example, the plug-in has the capability to provide ADI
contained in parts of the client request. A special prefix is used in the
authorization rule to "trigger" this type of ADI source.

v An external source through dynamic ADI retrieval services.
ADI can be obtained externally through the AMWebARS Web service. A call is
made to the AMWebARS Web service through the resource manager's
entitlement service. ADI from the external source is returned in XML format to
the authorization rules evaluator.
ADI can be obtained dynamically through calls to specific entitlement services
that have been configured to retrieve ADI dynamically during rule evaluation. A
call is made to each dynamic ADI retrieval service and the ADI values are
returned to the authorization rules evaluator. Examples of dynamic ADI retrieval
services shipped with Security Access Manager are the "Registry attribute
entitlement service", which retrieves ADI values from the user registry, and the
AMWebARS entitlement service, which retrieves ADI values using the

© Copyright IBM Corp. 2000, 2012 191

AMWebARS web service. Both are discussed in more detail in the IBM Security
Access Manager for Web: Authorization C Developer's Reference.

Retrieving ADI from the plug-in client request

Authorization decision information (ADI) may be contained in the request header,
the request query string, and the request POST body. You can create authorization
rules that refer to this authorization decision information (ADI). This is done using
plug-in specific XML containers that refer to the ADI to be acquired.

The resource-manager-provided-adi parameter in the [aznapi-configuration]
stanza of the pdwebpi.conf configuration file specifies—to the authorization rules
evaluation process— the prefixes that can be used in container names specified by
authorization rules. To specify multiple prefixes, use multiple entries of the
resource-manager-provided-adi parameter:

The following container names contain prefixes that are appropriate for the
plug-in:
v AMWS_hd_name

Request header container name. The value of the HTTP header called name in
the HTTP request is returned to the authorization rules evaluator as ADI.

v AMWS_qs_name

Request query string container name. The value of name in the request query
string is returned to the authorization rules evaluator as ADI.

v AMWS_pb_name

Request POST body container name. The value of name in the request POST
body is returned to the authorization rules evaluator as ADI.

Prefixes can be specific to any resource manager. Accordingly, the resource
manager must be designed to respond appropriately to a request for ADI.

Authorization rules are written that specify the ADI required from client requests.
For example, if the host name contained within the HTTP header is required as
ADI, the AMWS_hd_ prefix is used in the XML container name specified in the rule.

This plug-in-specific prefix alerts the authorization evaluation process that the
required ADI is available in the client request and that the plug-in knows how to
find, extract, and return this ADI. The AMWS_hd_host container name is sent to the
plug-in. The plug-in responds to the AMWS_hd_host container name by looking for
the "host" header in the client request and extracting the value associated with that
header. The plug-in returns the "host" header value (as an XML container) to the
authorization rules evaluation process. The authorization rules evaluation process
uses the value as ADI in its evaluation of the rule.

Example: Retrieving ADI from the request header

The following example authorization rule requires the name of the client machine's
host name. The client request is set up to include the host name value in the "host"
header of the request. The use of the AMWS_hd_ prefix in the rule alerts the
authorization evaluation process that the required ADI is available in the client
request and that the plug-in knows how to find, extract, and return this ADI.
<xsl:if test=’AMWS_hd_host = "machineA"’>!TRUE!</xsl:if>

192 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The plug-in is designed to know how to handle the extraction of ADI information
from the request:
[aznapi-configuration]
resource-manager-provided-adi = AMWS_hd_

The plug-in understands this information can be found in the request header name
host. The plug-in extracts the value contained in the "host" header and returns it to
the authorization evaluation process.

The example authorization rule is evaluated to be true if the value provided in the
request's "host" header is "machineA".

In a similar manner, information required to evaluate an authorization rule can
come from the request POST body or the query string of the request.

Example: Retrieving ADI from the request query string

The following example authorization rule requires the name of the client's zip code
as passed in the query string of a GET request (as submitted in response to a
form). The client request is set up to include the zip code value in the "zip" field of
the request query string.
https://www.service.com/location?zip=99999

The use of the AMWS_qs_ prefix in the rule alerts the authorization evaluation
process that the required ADI is available in the client request and that the plug-in
knows how to find, extract, and return this ADI.
<xsl:if test=’AMWS_qs_zip = "99999"’>!TRUE!</xsl:if>

The plug-in is designed to know how to handle the extraction of ADI information
form the request:
[aznapi-configuration]
resource-manager-provided-adi = AMWS_qs_

The plug-in understands this information can be found in the request query string
under the field name "zip". The plug-in extracts the value contained in the "zip"
field and returns it to the authorization evaluation process.

The example authorization rule is evaluated to be true if the value provided in the
request's query string "zip" field is "99999".

In a similar manner, information required to evaluate an authorization rule can
come from the request POST body or the request header.

Example: Retrieving ADI from the request POST body

The following example authorization rule requires the name of the client's total
purchase amount from a Web shopping cart as passed in the body of a POST
request (as submitted in response to a form). The client request is set up to include
the total purchase value in the "purchase-total" field of the request POST body.

The use of the AMWS_pb_ prefix in the rule alerts the authorization evaluation
process that the required ADI is available in the client request and that the plug-in
knows how to find, extract, and return this ADI.
<xsl:if test=’AMWS_pb_purchase-total < "1000.00"’>!TRUE!</xsl:if>

Chapter 9. Authorization decision information retrieval 193

The plug-in is designed to know how to handle the extraction of ADI information
form the request:
[aznapi-configuration]
resource-manager-provided-adi = AMWS_pb_

The plug-in understands this information can be found in the request POST body
under the field name "purchase-total". The plug-in extracts the value contained in
the "purchase-total" field and returns it to the authorization evaluation process.

The example authorization rule is evaluated to be true if the value provided in the
request's POST body "purchase-total" field is less than "1000.00".

In a similar manner, information required to evaluate an authorization rule can
come from the request header or the query string of the request.

Retrieving ADI from the user credential

Authorization rules can be written to use ADI that is provided initially to the
authorization rules evaluator as part of the credential. The initial call to the
authorization service (azn_decision_access_allowed_ext()) actually contains the
credential information of the user.

The authorization rules evaluator always looks through this credential information
for any ADI required by the rule being processed. The authorization rule can use
the value from any field in the credential, including extended attributes added to
the credential during authentication.

The technique for creating extended attributes in the user credential is explained in
“Adding extended attributes for credentials” on page 106.

Supplying a failure reason

Authorization rules allow you to set up special, and often complex, conditions
governing the ability to access a protected resource. However, the standard result
of a failed authorization decision is to stop the progress of the request to the
service application that controls the resource, and present the client with a
"forbidden" message.

If the authorization rule is written to include a failure reason, and is evaluated as
FALSE by the Security Access Manager authorization rules evaluator, the plug-in
receives the reason for the rule's failure along with the standard "forbidden"
message from the authorization service. The failure reason is usually ignored and
the "forbidden" decision is enforced

You can optionally configure the plug-in to reject this standard response and allow
denied requests to proceed to a back-end service application.

The request is accompanied by the failure reason provided in the authorization
rule. The back-end service application then has the opportunity to proceed with its
own response to the situation. This optional configuration in specified using the
pass-on-rule-failure-reason parameter in the [boolean-rules] stanza in the
pdwebpi.conf file.

Authorization rules are typically used in conjunction with service applications that
can understand and handle this more sophisticated level of access control. In some

194 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

cases, it is necessary for the service application to receive a request that is denied
by the Security Access Manager authorization service. Such an application is
written to understand failure reason information and can provide its own response
to a request that has failed a Security Access Manager authorization rule.

For example, the order processing component of a shopping cart application can be
governed by an authorization rule that denies action on an order if the total
purchase price exceeds the credit limit of the user. It is important for the shopping
cart application to receive the entire request and the reason for failure. Now the
shopping cart application can take matters into its own hands and provide a
user-friendly response, such as advising the user to eliminate a portion of the
order. The interaction with the user is preserved rather than cut off.

Always use this option with caution. It is important to coordinate the use of failure
reasons in authorization rules with a service application's ability to interpret and
respond to this information. You do not want to accidently create a situation where
access is granted to a resource controlled by an application that cannot respond
accurately to the AM_AZN_FAILURE header.

Configuring dynamic ADI retrieval
Rules can be written requiring authorization decision information (ADI) that
cannot be found in any of the information that the Security Access Manager
authorization service can access.

In these cases, it is necessary to retrieve the ADI from an outside source. The
retrieval can be done in real time by a dynamic ADI entitlement retrieval service.
The AMWebARS Web service, currently provided with the WebSEAL Attribute
Retrieval Service, is one type of entitlement retrieval service.

The Attribute Retrieval Service (ARS) provides communication and format
translation services between the plug-in entitlement service library and an external
provider of authorization decision information. The following diagram illustrates
the process flow for the AMWEBARS Web service:

Process flow:

Figure 15. Attribute retrieval service process flow.

Chapter 9. Authorization decision information retrieval 195

1. The client makes a request for a protected resource by an authorization rule.
2. The authorization rules evaluator, which is a part of the authorization service,

determines that specific authorization decision information (ADI) is required to
complete the rule evaluation. The ADI requested is not available from the user
credential, the authorization service, or the plug-in.

3. The task of ADI retrieval is sent to the AMWebARS Web service through the
entitlement service library. This service formats the request for ADI as a SOAP
request. The SOAP request is sent over HTTP to the Web Service Description
Language (WSDL) interface of the AMWebARS Web service.

4. The AMWebARS Web service formats the request appropriately for the external
profiling service that is to provide the ADI.

5. The external profiling service returns the appropriate ADI.
6. The ADI is formatted in another SOAP container and returned to the

entitlement service of the plug-in. Now the authorization rules evaluator has
the necessary information to evaluate the rule and decide to accept or deny the
original client request.

For information about deploying the attribute retrieval service, see the IBM Security
Access Manager: WebSEAL Administration Guide.

Configuring the plug-in to use the AMWebARS Web service
Perform the following tasks to configure plug-in to use the AMWebARS Web
service.

Procedure
1. In the pdwebpi.conf configuration file, specify the identification name (ID) of

the dynamic ADI entitlement retrieval service that is queried when missing
ADI is detected during a rules evaluation. In this case, the AMWebARS Web
service is specified: [aznapi-configuration] dynamic-adi-entitlements-
services = AMWebARS

2. In the pdwebpi.conf configuration file, use the configured dynamic ADI
entitlement retrieval service ID as a parameter to specify the appropriate
built-in library that formats out-bound ADI requests and interprets incoming
responses: For example: [aznapi-entitlement-services] dynADI =
azn_ent_amwebars

3. In the pdwebpi.conf configuration file, specify the URL to the dynADI Web
service located in the WebSphere environment (entered as one line): [amwebars]
service-url = http://websphere_hostname:websphere_port \
/dynadi/dynadi/ServiceToIServicePortAdapter

4. Restart the plug-in.

196 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Appendix A. DynADI Web service reference

This appendix contains the administration and configuration reference for the
dynamic authorization decision information (dynADI) Web service.

Topics in this appendix include:
v “Basic configuration”
v “Editing the data tables” on page 199
v “Creating custom protocol plug-ins” on page 203

Basic configuration

The dynADI Web service has the following basic configuration:

Configuration files

The following dynADI Web service configuration and XML files are located within
the working directory of the supporting application. The current implementation of
the dynADI Web service is installed in a WebSphere environment:
websphere_install_directory/WebSphere?ApServer/bin/

dynadi.conf

The dynadi.conf configuration file contains parameters and values that specify the
general configuration of the DynADI Web service.

ContainerDescriptorTable.xml

The ContainerDescriptorTable.xml file contains a list of all container descriptors
that can be retrieved by the dynADI Web service. The service only recognizes
containers that are described in this table. The table is XML-based.

ProviderTable.xml

The ProviderTable.xml file contains the description of the providers available for
ADI retrieval. The XML-based file contains, for each provider, the provider's URL
and information necessary to connect to the provider and request containers (ADI)
from it. You can only refer to providers that are named in this file.

ProtocolTable.xml

The ProtocolTable.xml file contains the description of the protocols used by the
dynADI Web service. The file contains each protocol's full qualified class name and
the protocol ID. You can only refer to protocols that are named in this file.

Descriptions of dynadi.conf configuration parameters

Table locations

descriptor_table_filename The file name of the ContainerDescriptorTable. The
ContainerDescriptorTable contains all container_type_ids
the service can retrieve.

© Copyright IBM Corp. 2000, 2012 197

provider_table_filename The file name of the ProviderTable. The ProviderTable
contains information about the different dynADI
providers used by the dynADI Web service.

protocol_table_filename The file name of the ProtocolTable. The ProtocolTable
contains information about the different dynADI
protocols used by the dynADI Web service. Please note
that the service only uses this file if the option
protocol_module_load_from_general_config is set to
"false".

key_store_filename File name of the dynADI Web service's keystore. The
keystore is a central storage for all client keys used by the
dynADI Web service. It can be administrated with the
Java tool keytool.

key_store_password The password to unlock the keystore. Please note that the
keys are unlocked independently. The password used to
unlock them is stored in the provider's description.

Logging

exception_logfile_filename File name of the logfile where exceptions are logged. The
exception logfile contains information about errors and
invalid inputs.

metering_logfile_filename File name of the metering logfile. The metering logfile
contains one entry for each container retrieved from a
provider.

trace_logfile_filename File name of the trace logfile. The trace logfile contains a
detailed trace of the service's program operation.

exception_logging Turns the exception logging on and off. Set the value to
"true" to activate exception logging (typically used).
Default is true.

metering_logging Turns the metering logging on and off. Set the value to
"true" to activate the logging of retrieved containers.
Default is true.

trace_logging Turns the trace logging on and off. Set the value to "true"
to activate tracing. Be aware that the traces consume a
large amount of disk space. Default is "false".

use_stderr_for_fatal If set to "true", fatal errors in exception logging are not
only reported to the logfile, but also to stderr.

use_stderr_for_exceptions If set to "true", all exceptions in exception logging are
not only reported to the logfile, but also to stderr.

trace_verbose_monitor_locks If set to "true", all entries of synchronized monitors are
reported to trace. This option is used for the search of
deadlocks.

trace_verbose_get_entitlement If set to "true", the trace contains all inputs of the
getEntitlement calls. Be aware that this kind of trace
might contain personal information about the customer.

Limitation of client and session number

The following options can be used to influence the resource consumption of the
dynADI Web service. These options are for experts only.

198 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

limit_number_of_sessions This value activates the limitation of the session number.
If set to "true", the service only generates a limited
number of sessions. Default is "false".

max_number_of_sessions Sets the maximum number of sessions that is generated.

limit_number_of_clients
_per_session

This value activates the limitation of the client number
per session. If set to "true", a session can only create a
fixed number of clients. Default is "false".

max_number_of_clients
_per_session

Sets the maximum number of clients a session can
generate.

Miscellaneous options

return_ids_full_qualified The service returns the containers in an attribute list with
the container_type_ids as key. By default, the service
uses the same format (with namespace or without) as the
app_context. By setting this value to "true", you can force
the service to always return container_type_ids including
the namespace. Default is "false".

Protocol modules to load at initialization

protocol_module_load_from_general_config The dynADI Service dynamically loads
protocol modules at initialization time.
If this key is set to "true", the service
uses this config file. Otherwise, it uses
another XML file specified with the key
"protocol_table_filename".

protocol_module_load.* The package to load.

protocol_module_id.* The protocol id that should be
associated with the protocol.

Editing the data tables

The dynADI Web service is configured using different data tables. These tables tell
the service, for example, what providers can be accessed, what dynADI containers
can be retrieved from them, and what protocol is required to communicate with
the provider. The three primary tables include:
v ContainerDescriptorTable, which contains all information about the retrievable

dynADI containers
v ProviderTable, which contains the dynADI providers available
v ProtocolTable, which describes the protocols used by the dynADI Web service

Provider table

This table contains information about the providers available to the service. A
Provider entry is required in this table for each server that must connect to the
dynADI Web service.

Filename: ProviderTable.xml

Format: XML

Table name: ProviderTable

Appendix A. DynADI Web service reference 199

Element name: Provider

Provider sub-elements

A Provider element can contain the following sub-elements:

provider_id The ID of the provider (required). The ContainerDescriptors use this ID to
refer to a certain provider. The provider_id must be unique.

name The name of the provider.

provider_url The URL of the provider's endpoint (required). This URL is connected by
protocols that want to access the provider. To use an HTTPS URL, the
Java HTTPS support has to be activated. For example, setting the virtual
machine property:

Djava.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol

client_key_alias The protocol uses this alias to lookup the private key and certificate
corresponding to this provider in the service's keystore.

client_key
_password

The password assigned to the provider's private key.

Example ProviderTable

The following code illustrates a valid ProviderTable with one Provider entry:
<?xml version="1.0" encoding="UTF-8"?>
<ProviderTable>
<Provider>
<provider_id>Erandt_Securtities_Entitlements</provider_id>
<name>ese</name>
<provider_url>https://rse.erandt.com/responder</provider_url>
<client_key_alias>erandt_test_account</client_key_alias>
<client_key_password>changeit</client_key_password>
</Provider>
</ProviderTable>

ContainerDescriptorTable

The ContainerDescriptorTable describes all containters the dynADI Web service can
retrieve. You have to add a ContainerDescriptor entry to this table if you want the
service to retrieve another type of dynADI container.

Filename: ContainerDescriptor.xml

Format: XML

Table name: ContainerDescriptorTable

Element name: ContainerDescriptor

200 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

ContainerDescriptor sub-elements

A ContainerDescriptor element can contain the following sub-elements:

container_type_id The ID of this ContainerDescriptor and the corresponding
container (required). You must refer to this ID to request a
container from the dynADI Web Service. It is generated the
following way, if the namespace is present:

container_type_id = namespace_prefix + ": "
+container_name

If the namespace is not present, it is equal to the
container_name. The container_type_id must be unique.

container_name The name of this container descriptor (required). Within a
particular namespace, the container_name must be unique.
The container_name must not contain a colon (":") character.

namespace_prefix The URL of the namespace in which the container_name is
valid (required). The namespace tag can be empty. If this is
the case, the container_type_id equals the container_name.

cost The per retrieval cost of a dynADI container corresponding
to this descriptor. Don't forget the currency type.

protocol_id This ID (required) refers to the unique protocol ID of one of
the DynAdiProtocols. The protocol given with this ID is used
to retrieve the container from the provider. This element has
to match an ID known to the service.

provider_id This ID (required) refers to the dynADI provider which is
capable of sending a container corresponding to the
descriptor. The service connects to this provider when this
container is requested.

properties General client and protocol dependent properties. You add a
property setting the following way:

Add an element called property with an attribute named key.
The attribute contains the name or key of the property, the
content of the element, and the corresponding value.
Consider the client_init_properties in the example code
below.

client_init_properties Properties specific to the initialization of the DynAdiClients.
One property used by different protocols is the attribute
mapping described below.

ContainerPayloadFormat This element (required) describes the structure and contents
of the containers corresponding to this descriptor. The
content of this element is protocol dependent.

The DynAdiProtocols currently available provides a list of
elements named with the attribute names to be retrieved
from the provider in this element. The containers are
wrapped by a element named with the container_name.

Attribute mapping

Attribute mapping might be necessary, if the DynAdiProvider uses attribute names
not compatible with XML element names. Such a mapping is generated the
following way:

The key has the structure:

Appendix A. DynADI Web service reference 201

"map_provider_attribute_name__" + source__provider_attribute_name

if you map one of the provider's attribute names to one of your own, or
"map_attribute_name__" + source_attribute_name

if you do a reverse mapping. The value of such a property contains the attribute
name to map to. Note the such an declaration is only one-way. You must add a
second one to generate a reverse-mapping.

Example ContainerDescriptorTable

Example for a ContainerDescriptorTable with only one descriptor:
<?xml version="1.0" encoding="UTF-8"?>
<ContainerDescriptorTable>
<ContainerDescriptor>
<container_type_id>
http://ese.erandt.com/attributes:ese__test_container_address_line
</container_type_id>
<container_name>ese__test_container_address_line</container_name>
<namespace_prefix>http://ese.erant.com/attributes</namespace_prefix>
<cost>1 USD</cost>
<protocol_id>ese_entitlement_protocol</protocol_id>
<provider_id>Erandt_Securities_Entitlements</provider_id>
<properties />
<client_init_properties>
<property key=’map_attribute_name_erandt.com_core_attr_address">
//erandt.com/attr/address
</property>
<property key="map_provider_attribute_name__//erandt.com/attr/address">
erandt.com_attr_address
</property>
</client_init_properties>
<ContainerPayloadFormat>
<ese_test_container_address_line>
<address_line />
</ese_test_container_address_line>
</ContainerPayloadformat>
</ContainerDescriptor>
</ContainerDescriptorTable>

ProtocolTable

The ProtocolTable describes all protocols the dynADI Web service uses. You have
to add a Protocol entry to this table if you want the service to retrieve another
protocol type.

Filename: ProtocolTabler.xml

Format: XML

Table name: ProtocolTable

Element name: Protocol

Protocol sub-elements

A Protocol element can contain the following sub-elements:

protocol_id Reference ID used by other tables (required).

202 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

class_name Full qualified class name of the Java class that corresponds to
the DynAdiProtocol (required). "Fully qualified" refers to the
inclusive package path.

Example ProtocolTable

Example for a ProtocolTable with only one protocol:
<?xml version="1.0" encoding="UTF-8"?>
<ProtocolTable>
<Protocol>
<protocol_id>file_reader_protocol</protocol_id>
<class_name>dynadientitlementservice.protocol.FileReaderProtocol</class_name>
</Protocol>
</ProtocolTable>

Creating custom protocol plug-ins

You can create custom protocol plug-ins for the dynADI Web service.

Overview

The dynADI Web service uses a special XML construct, known as a container, to
retrieve and convey authorization decision information. An ADI request is always
made in the form of a container name. When a request for ADI (as a container
name) is received by the dynADI Web service, the container name is compared
against all container names described in the Container Descriptor Table
(ContainerDescriptorTable.xml).

If a match is found, the process of retrieving the ADI can continue. Information in
the container description reveals what ADI is required, where the ADI can be
found, and what protocol must be used to communicate with the external provider
of the ADI. The ADI, enclosed within opening and closing container name XML
tags, is known as a container.

The dynADI Web service generates a client that uses the necessary protocol to
retrieve the ADI from the external provider. If the ADI must be retrieved using a
protocol that is not provided by the current release of the dynADI Web service
(included with Security Access Manager WebSEAL), then a custom protocol
plug-in must be created.

Creating the protocol plug-in

Custom protocols are written as Java classes that extend the public class
FixedProviderProtocol, and must implement the following three abstract methods:
v public ProtocolInitStatus initialize()

v public ProtocolRunStatus run()

v public ProtocolShutdownStatus shutdown()

The initialize() method is called once, to initialize the protocol during the
execution of the "initialize" method of the dynADI Web service. For example, this
method can be responsible for establishing a connection to a remote database or
profiling service.

Appendix A. DynADI Web service reference 203

The run() method is called (by the "getEntitlement" method of the dynADI Web
service) each time a request is made for a container that must be retrieved by this
protocol. This method must retrieve the requested container (or containers)
specified by the _container_descriptors member variable of the client class'
HashMap. This container can be obtained using the elements() method of the
client class.

The client class' addContainer() method is then used to add the retrieved container
(or containers) to the client class' _session. How, and from where, the protocol
acquires the container is specific to the individual protocol.

The shutdown() method is called once to shutdown the protocol during the
execution of the "shutdown" method of the dynADI Web service. For example, this
method can be responsible for closing the connections to remote databases or
profiling services that were opened during the "initialize" method.

The following resources are available to assist in creating a custom protocol
plug-in:
v DynADI class documentation

/opt/pdweb/java/dynadi/dynadi_class_doc.zip

v Example protocol plug-in modules (Java)
/opt/pdweb/java/dynadi/protocol_protocol/exampleProtocol.java

v Compiled (built) version of the example module
/opt/pdweb/java/dynadi/protocol_protocol/exampleProtocol.class

v README file, that explains how to customize and compile the example code
/opt/pdweb/java/dynadi/protocol_protocol/README

204 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Appendix B. Using pdbackup to backup plug-in data

The pdbackup utility allows you to back up and restore Security Access Manager
data. The pdbackup utility uses, as an argument, a backup list file that specifies
the files and directories that require backing up. Each major Security Access
Manager component (such as Base, WebSEAL and the plug-in) has its own list file.
The pdinfo-pdwebpi.lst file specifies the plug-in files and directories that are
backed up by the pdbackup utility.

This appendix describes how to use the pdbackup utility to back up and restore
plug-in data. The complete reference for the pdbackup utility is located in the IBM
Security Access Manager for Web: Command Reference.

Note: On Windows 2008 systems with Tivoli Access Manager 6.0, 6.1, or 6.1.1:
The pdbackup utility on Windows 2008 may hang while waiting for user input. If
you encounter this issue, use either of the following approaches to continue
backing up or restoring your data:
v Type an "A" in the command window. The utility resumes normally.
v Apply the following fix pack for your respective Tivoli Access Manager release,

then rerun the pdbackup utility:
– Tivoli Access Manager 6.0: Fixpack 28 or later
– Tivoli Access Manager 6.1: Fixpack 08 or later
– Tivoli Access Manager 6.1.1: Fixpack 04 or later

Functionality

You can back up and restore plugin files and directories.

Backing up plug-in data

The pdbackup utility backs up the list of files and directories contained in the
plug-in backup list file, pdinfo-pdwebpi.lst.

UNIX:

By default, pdinfo-pdwebpi.lst is located in /opt/pdwebpi/etc/.

By default, the resulting backup archive is stored as a single .tar file in
/var/PolicyDirector/pdbackup.

The default .tar file name is constructed using the backup list filename, plus a
date and time stamp:
list-file-name_ddmmyyy.hh_mm.tar

For example:
pdinfo-pdwebpi.lst_30jul2003.10_39.tar

Alternatively, you can specify:
v A custom file name for the .tar file (use the –file option)

This custom file name does not contain a date and time stamp.

© Copyright IBM Corp. 2000, 2012 205

v A custom directory location for the .tar file (use the –path option)

The contents of the .tar file extract into the following directories:
opt/ var/ tmp/

Windows:

By default, the pdinfo-pdwebpi.lst file is located in
C:\Program Files\Tivoli\PDWebpi\etc\

By default, the resulting backup archive is stored as a directory tree in the
C:\Program Files\Tivoli\PDWebpi\pdbackup\ directory.

The default .dar directory name is constructed from the backup list file name, plus
a date and time stamp:
list-file-name_ddmmmyyyy.hh_mm.dar

For example:
pdinfo-pdwebpi.lst_30jul2003.10_39.dar

The contents of the .dar file extract into a sub-directory and a file:
%C%
Registry

The %C% directory contains the complete backup tree. The name of this directory is
determined by the letter designation of the drive where the plug-in files and
directories are located. The Registry file stores the registry keys (.reg extensions).

Alternatively, you can specify:
v A custom file name for the .dar directory archive (use the –file option)

This custom file name does not contain a date and time stamp.
v A custom directory location for the .dar directory archive (use the –path option)

Restoring plug-in data

Locations for restored plug-in data depend on the operating system.

UNIX:

Archived files and directories are restored from the .tar file to the /opt/pdwebpi
directory.

Windows:

Archived files are restored to their original installation directory locations.

Syntax

A complete reference for the pdbackup utility can be found in the IBM Security
Access Manager for Web: Command Reference.

pdbackup –a backup –l backup-list-pathname \
[–path custom-pathname][–file archive-pathname] [–usage] [–?]

206 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

pdbackup –a restore –file archive-pathname \
[–path custom-pathname] [–usage] [–?]

Option Description

–a [backup|restore|extract] Specifies backup, restore, or extract operation.

–l backup-list-pathname Specifies the fully qualified path to the backup
list file (pdinfo-pdwebpi.lst).

–path custom-pathname Used for backup, specifies a custom archive
directory location.

–file archive-pathname Used for backup, specifies a custom name for the
archive file.

Used for restore, specifies the fully qualified
path to the archive file that is to be restored.

You can use short versions of the command option names, but the abbreviation
must be unambiguous. For example, you can type a for action. However, values
for arguments to these options cannot be abbreviated.

Examples

UNIX examples
1. The following example performs a standard back up with default values:

pdbackup -a backup -l /opt/pdwebpi/etc/pdinfo-pdwebpi.lst

This results in a file named pdinfo-pdwebpi.lst_date.time.tar that is stored in
the /var/PolicyDirector/pdbackup directory.

2. The following example performs a back up and stores the default archive file in
the /var/backup directory:
pdbackup -a backup -l /opt/pdwebpi/etc/pdinfo-pdwebpi.lst -path /var/backup

This results in a file named pdinfo-pdwebpi.lst_date.time.tar located in the
/var/pdbackup directory.

3. The following example performs a back up and creates an archive file named
amwebarchive.tar:
pdbackup -a backup -l /opt/pdwebpi/etc/pdinfo-pdwebpi.lst -file amwebarchive

The default archive extension (.tar) is appended to the custom amwebarchive
file name. This file is stored in the default /var/PolicyDirector/pdbackup
directory.

4. The following example restores the archive file from the default directory
location:
pdbackup -a restore -file pdinfo-pdwebpi.lst_29Aug2003.07_24.tar

5. The following example restores the archive file from the /var/pdback directory:
pdbackup -a restore -file /var/pdback/pdinfo-pdwebpi.lst_29Aug2003.07_25.tar

Windows examples
1. The following example performs a standard backup with default values:

pdbackup -a backup -l install_path\etc\pdinfo-pdwebpi.lst

Appendix B. Using pdbackup to backup plug-in data 207

This results in a file named pdinfo-pdwebpi.lst_date.time.dar located in the
plug-in install_path\pdbackup directory.

2. The following example performs a back up using the default archive file name
and stores the file in the C:\pdback directory:
pdbackup -a backup -l install_path\etc\pdinfo-pdwebpi.lst -path c:\pdback

3. The following example performs a back up and creates a file named
pdarchive.dar:
pdbackup -a backup -l install_path\etc\pdinfo-pdwebpi.lst -file pdarchive

The default archive extension (.dar) is applied to the custom pdarchive file
name. The file is stored in the default install_path\pdbackup directory.

4. The following example performs a back up to the \pdback directory on the F:
drive:
pdbackup -a backup -l pdinfo-pdwebpi.lst -path f:\pdback

5. The following example restores the archive file from the default directory (single
directory shown over two lines):
pdbackup -a restore -file install_path\pdbackup
\pdinfo-pdwebpi.lst_29Jun2003.07_24.dar

6. The following example restores files from the H:\pdbackup directory:
pdbackup -a restore -file h:\pdbackup\pdinfo-pdwebpi.lst_29Jun2003.07_25.dar

Contents of pdinfo-pdwebpi.lst
[UNIX FILES]
fully qualified file names
./opt/pdwebpi/etc
./var/pdwebpi/audit
./var/pdwebpi/db
./var/pdwebpi/keytab
./var/pdwebpi/log

[UNIX CONF FILES]
configuration files that specify a file to include
file:stanza:option
/opt/pdwebpi/etc/pdwebpi.conf:uraf-ad:ad-server-config
/opt/pdwebpi/etc/pdwebpi.conf:ldap:ldap-server-config
/opt/pdwebpi/etc/pdwebpi.conf:ldap:ssl-keyfile
/opt/pdwebpi/etc/pdwebpi.conf:ldap:ssl-keyfile-stash
/opt/pdwebpi/etc/pdwebpi.conf:failover:failover-cookies-keyfile
/opt/pdwebpi/etc/pdwebpi.conf:ltpa:ltpa-keyfile
/opt/pdwebpi/etc/pdwebpi.conf:ltpa:ltpa-stash-file
/opt/pdwebpi/etc/pdwebpi.conf:iis:query-log-file
/opt/pdwebpi/etc/pdwebpi.conf:iis:log-file
/opt/pdwebpi/etc/pdwebpi.conf:iplanet:query-log-file

[WINDOWS FILES]
BASEDIR=SOFTWARE\Tivoli\Access Manager Plug-in for Web Servers:Path
<BASEDIR>etc
<BASEDIR>log
<BASEDIR>audit
<BASEDIR>db
<BASEDIR>keytab

[WINDOWS CONF FILES]
configuration files that specify a file to include
file:stanza:option
<BASEDIR>etc/pdwebpi.conf:uraf-ad:ad-server-config
<BASEDIR>etc/pdwebpi.conf:ldap:ldap-server-config
<BASEDIR>etc/pdwebpi.conf:ldap:ssl-keyfile
<BASEDIR>etc/pdwebpi.conf:ldap:ssl-keyfile-stash
<BASEDIR>etc/pdwebpi.conf:failover:failover-cookies-keyfile
<BASEDIR>etc/pdwebpi.conf:ltpa:ltpa-keyfile

208 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

<BASEDIR>etc/pdwebpi.conf:ltpa:ltpa-stash-file
<BASEDIR>etc/pdwebpi.conf:iis:query-log-file
<BASEDIR>etc/pdwebpi.conf:iis:log-file
<BASEDIR>etc/pdwebpi.conf:iplanet:query-log-file

[WINDOWS REGISTRY]
specify keys to backup
SOFTWARE\Tivoli

Additional backup data

The following stanzas and parameters are not listed in the pdinfo-pdwebpi.lst file
and are therefore not automatically backed up. If you require this data to be
backed up, you must edit the pdinfo-pdwebpi.lst and add this information.
Follow the format described at the beginning of the pdinfo-pdwebpi.lst file.
[cdsso-domain-keys]
<domain name> = <key file>

[ecsso-domain-keys]
<domain name> = <key file>

Appendix B. Using pdbackup to backup plug-in data 209

210 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Appendix C. Plug-in configuration file reference

IBM Security Access Manager Plug-in for Web Servers is controlled through the
configuration of parameters located in the pdwebpi.conf configuration file. The
configuration file is located in the etc directory in the default installation location.

The configuration file contains sections or stanzas under which parameters for
controlling similar plug-in functionality are grouped. Stanzas appear within
brackets, for example, [performance]. The parameters grouped under stanzas take
the basic form, key = value, though their actual implementation varies greatly
depending on what they are representing. This appendix is a reference to the
various stanzas and parameters available for configuring plug-in operation.

Guidelines for configuring stanzas

These guidelines are provided to help you make changes to the IBM Security
Access Manager Plug-in for Web Servers configuration file.

The guidelines are divided into these types:
v General guidelines
v Default values
v Strings
v Defined strings
v File names
v Integers
v Boolean values

General guidelines

Use the following general guidelines when making changes to the configuration
settings:
v There is no order dependency or location dependency for stanzas in any

configuration file.
v Stanza entries are marked as required or optional. When an entry is required,

the entry must contain a valid key and value.
v Do not change the names of the keys in the configuration files. Changing the

name of the key might cause unpredictable results for the servers.
v Stanza entries and key names are case-sensitive. For example, auth-data and

Auth-Data are treated as different entries.
v Spaces are not allowed for names of keys.
v For the key value pair format of key = value, the spaces surrounding the equal

sign (=) are not required, but they are typically used.
v Non-printable characters (such as tabs, carriage returns, and line feeds) that

occur at the end of a stanza entry are ignored. Non-printable characters are
ASCII characters with a decimal value less than 32.

© Copyright IBM Corp. 2000, 2012 211

Default values

Use the following guidelines when changing default configuration settings:
v Many values are created or modified only by using configuration programs. Do

not manually edit these stanzas or values.
v Some values are filled in automatically during configuration. These values are

needed for the initialization of the server after the configuration.
v The default values for a stanza entry might be different, depending on the server

configuration. Some key value pairs are not applicable to certain servers and are
omitted from the default configuration file for this server.

Strings

Some values accept a string value. When you manually edit the configuration file,
use the following guidelines to change configuration settings that require a string:
v String values are expected to be characters that are part of the local code set.
v Additional or different restrictions on the set of allowable string characters

might be imposed. For example, many strings are restricted to ASCII characters.
Consult each stanza entry description for any restrictions.

v Double quotation marks are sometimes, but not always, required when you use
spaces or more than one word for values. Refer to the descriptions or examples
for each stanza entry when in doubt.

v The minimum and maximum lengths of user registry-related string values, if
there are limits, are imposed by the underlying registry. For example, for Active
Directory the maximum length is 256 alphanumeric characters.

Defined strings

Some values accept a string value, but the value must be one of a set of defined
strings. When you manually edit the configuration file, make sure that the string
value you type matches one of the valid defined strings values.

For example, the [iv-headers] stanza contains the entry, accept, where the valid
values are: all, iv-creds, iv-user, iv-user-l or iv-remote-address. The value for accept is
expected to one of these. Any other value is invalid and results in an error.

File names

Some values are file names. For each stanza entry that expects a file name as a
value, the description of the stanza entry specifies which of the following
constructs are valid:
v Filename

No directory path included.
v Relative filename

A directory path is allowed but not mandatory.
These files typically are expected to be located relative to the location of a
standard plug-in directory. The stanza entry for each relative path name lists the
root directory to which the file name is relative.

v Fully qualified absolute path
An absolute directory path is required.

212 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Note: Some stanza entries allow more than one of the above choices.

The set of characters permitted in a file name can be determined by the file system
and by the local code set. For Windows, file names cannot have these characters: a
backward slash (\), a colon (:), a question mark (?), or double quotation marks (").

Integers

Many stanza entries expect the value for the entry to be expressed as an integer.
v Stanza entries that take an integer value expect integer values within a valid

range. The range is described in terms of a minimum value and a maximum
value.

v For some entries, the integer value must be positive, and the minimum value is
1. For other entries, a minimum integer value of 0 is allowed.
For example, in the [aznapi-configuration] stanza, the entry logsize = 0 means
the log files do not rollover to a new file.

v For some entries requiring integer values, the plug-in does not impose an upper
limit for the maximum number allowed. For such an entry, the maximum
number is limited only by the size of memory allocated for an integer data type.
This number can vary, based on the type of operating system. For systems that
allocate 4 bytes for an integer, this value is 2147483647.
However, as the administrator, use a number that represents the value that is
most logical for the value you are trying to set.

Boolean values

Many stanza entries represent a Boolean value. The plug-in recognizes the Boolean
values yes and no.

Some of the entries in the configuration files are read by other servers and utilities.
For example, many entries in the [ldap] stanza are read by the LDAP client. Some
of these other programs recognize additional Boolean characters:
v yes or true

v no or false

Anything other than yes|true, including a blank value, will be interpreted as
no|false.

The recognized Boolean entries are listed for each stanza entry. Refer to the
individual descriptions to determine when true or false are also recognized.

[acctmgmt]

This stanza contains entries for user account management operations such as
changing user passwords, and logging out.

The values can be either:
v A macro HTML file located on the translated plug-in HTML directory,

install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

See “Macro support” on page 9 for information on plug-in supported macros.

Appendix C. [pam-authn] 213

[acctmgmt] stanza

help-page = help filename

The file name of the page displayed when a user requests help.

Default: help.html. This file is part of the installed product and can be edited to
suit your requirements.

A valid redirect URI can be specified. For example: help-page =
http://www.organization.com/TAM/help/help_index.html

logout-success = logout success filename

The file name of the page displayed when a user successfully logs out.

Default value: logout_success.html. This file is part of the installed product and
can be edited to suit your requirements.

A valid redirect URI can be specified. For example: logout-success =
http://www.organization.com/TAM/logout/after_logout.html

password-change-form = password change filename

The file name of the page displayed when a user requests to have their
password changed.

Default value: password_change.html. This file is part of the installed product
and can be edited to suit your requirements.

A valid redirect URI can be specified. For example: password-change-form =
http://www.organization.com/TAM/password/password_utils.html

password-change-success = password change success filename

The page displayed when a user completes a change of password successfully.

Default value: password_change_success.html. This file is part of the installed
product and can be edited to suit your requirements.

A valid redirect URI can be specified. For example: password-change-success =
http://www.organization.com/TAM/password/success.html

password-change-failure = password change failure filename

The page displayed to inform the user their password change request failed.

Default value: password_change_failure.html. This file is part of the installed
product and can be edited to suit your requirements.

A valid redirect URI can be specified. For example: password-change-failure =
http://www.organization.com/TAM/password/failure.html

password-change-form-uri = password change URI

The URI accessed when a user requests a change of password.

Default value: /pkmspasswd.form

password-change-uri = URI post password change

The URI destination after a password change.

Default value: /pkmspasswd.form

logout-uri = destination URI after logout

The URI destination after user logout.

Default value: /pkmslogout

help-uri = help page URI

214 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The location of the help page.

Default value: /pkmshelp

[apache]

Configuration parameters specific to the Security Access Manager Plug-in for
Apache.

[apache] stanza

query-contents = query contents program

Specifies the query contents program to use for browsing the Apache Web space
by the pdadmin> object list command.

Default value: /opt/pdwebpi/bin/wpi_apache_ls

query-log-file = path to query log file

Location of log file for errors encountered by the query contents program.

Default value: install-path/log/msg__pdwebpi-ls.log

doc-root = apache-branch-doc-root

Specifies the documentation root that provides the Web space browse capability
needed for performing pdadmin> object list commands. This parameter is set
by the configuration utility when setting up virtual hosts. It is specified on a
per-policy branch basis in an [apache:branch] stanza, for example,
[apache:/PDWebPI/lotus.com]

There is no default value.

[auth-data]

Contains one or more entries of the form: name = method:value. This parameter is
located in the stanza specified by the argument-stanza parameter.

name matches the name attribute of an input element within the login form.

method is either cred, gso, or string.

value contains a string interpreted according to the method value.

[auth-data] stanza

name = method:value

Appendix C. [pam-authn] 215

The value of the name parameter is set to the value of the name attribute of the
HTML input tag. For example: <input name=uid type=text>Username</input>

The value can also use the value of the name attribute of the HTML select or
textarea tags.

The method:value combination retrieves the authentication data required by the
form.

Default:

userid = cred:AZN_CRED_PRINCIPAL_NAME
pin = string:password
#userid = gso:username
#pin = gso:password

Example: uid =string:brian

[authentication-levels]

IBM Security Access Manager Plug-in for Web Servers supports a variety of
authentication methods. You configure the authentication methods for use with
your installation in the [common-modules] stanza. The [authentication-levels]
stanza defines the ordering and step-up authentication levels for the authentication
methods defined in the [common-modules] stanza. If an authentication module is
not given a level within the [authentication-levels] stanza it will default to an
authentication level of 1.

The format of the entries in this stanza is, level = module_name. Authentication
order is determined as the highest authentication level down to the lowest
authentication level for the authentication methods defined. If an authentication
level is shared by several authentication methods the sub-order is determined by
the order in which the modules appear within the [modules] stanza.

[authentication-levels] stanza

level = module-name

There are no default values configured.

Example:

1 = BA
2 = forms

[authentication-mechanisms]

Plug-in authentication modules that are defined in the [modules] stanza, extract
authentication information from requests. The actual authentication of requests is
performed by authentication mechanisms which validate authentication
information. This separation of roles allows custom external authentication
mechanism libraries written for WebSEAL to be used with the plug-in.

This stanza lists the mechanisms for all authentication methods supported by the
plug-in. Uncomment the line and supply the full path to a library to enable a
mechanism.

[authentication-mechanisms] stanza

216 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

passwd-cdas = passwd-cdas-library

Fully qualified path for the custom shared library for external authentication
mechanisms that implements client access with username and password for a
third-party registry.

There is no default.

passwd-ldap = passwd-ldap-library

Fully qualified path for a local built-in authenticator that implements client
access with LDAP username and password.

There is no default.

passwd-uraf = uraf-authn-library

Fully qualified path for a library that implements basic authentication using the
Security Access Manager URAF interface to underlying user registry types.

There is no default.

token-cdas = token-cdas-library

Fully qualified path for the custom shared library for external authentication
mechanisms that implements client access using the LDAP username and token
passcode.

There is no default.

cert-ssl = cert-ssl-library

Fully qualified path for the local built-in authenticator that implements client
access using a client-side certificate over SSL.

There is no default.

http-request = http-request-library

Fully qualified path for the local built-in authenticator that implements client
access using a special HTTP header, IP address, or IV Header with
iv-remote-address activated.

There is no default.

sso-create = sso-creation-library

Used for CDSSO and e-Community SSO.

There is no default.

Example:

AIX: sso-create = /opt/pdwebrte/lib/ibssocreate.a

Other UNIX: sso-create = /opt/pdwebrte/lib/ibssocreate.so

Windows: sso-create = C:\Program Files\Tivoli\PDWebRTE\bin\ssocreate.dll

sso-consume = sso-consumption-library

Appendix C. [pam-authn] 217

Used for CDSSO and e-Community SSO.

There is no default.

Example:

AIX: sso-consume =/opt/pdwebrte/lib/libssoconsume.a

Other UNIX: sso-consume =/opt/pdwebrte/lib/libssoconsume.so

Windows: sso-create = C:\Program Files\Tivoli\PDWebRTE\bin\
ssoconsume.dll

kerberosv5 = stli-authn-library

Required when enabling SPENGO authentication.

There is no default.

Example:

AIX: kerberosv5 = /opt/PolicyDirector/lib/libstliauthn.a

Other UNIX: kerberosv5 = /opt/PolicyDirector/lib/libstliauthn.so

Windows: kerberosv5 = C:\PROGRA~1\Tivoli\POLICY~1 \bin\stliauthn.dll

passwd-strength = passwd-strength-library

The fully qualified path for the library that checks new passwords entered on
the password change form.

There is no default.

cred-ext-attrs = cred-ext-attrs-library

The fully qualified path for the library that allows custom attributes
(name/value pairs) to be specified for inclusion in the credential.

There is no default.

su-password = su-password-library

The fully qualified path to the custom external authentication mechanism for
switch user

There is no default.

Example:

AIX: su-password = /opt/PolicyDirector/lib/libsuformauthn.a

Other UNIX: su-password = /opt/PolicyDirector/lib/libsuformauthn.so

Windows: su-password = C:\PROGRA~1\Tivoli\POLICY~1 \bin\suformauthn.dll

See “Configuring switch user (SU) for administrators” on page 24.

su-token-card = su-token-card-library

218 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Fully qualified path for a library that implements switch user authentication for
token authentication.

There is no default.

Example:

AIX: kerberosv5 = /opt/PolicyDirector/lib/libsucustom.a

Other UNIX: kerberosv5 = /opt/PolicyDirector/lib/libsucustom.so

Windows: kerberosv5 = C:\PROGRA~1\Tivoli\POLICY~1\bin\sucustom.dll

See “Configuring switch user (SU) for administrators” on page 24.

su-certificate = su-certificate-library

Fully qualified path for a library that implements switch user authentication for
certificate authentication.

There is no default.

Example:

AIX: kerberosv5 = /opt/PolicyDirector/lib/libsucert.a

Other UNIX: kerberosv5 = /opt/PolicyDirector/lib/libsucert.so

Windows: kerberosv5 = C:\PROGRA~1\Tivoli\POLICY~1\bin\sucert.dll

See “Configuring switch user (SU) for administrators” on page 24.

su-http-request = su-http-request-library

Fully qualified path for a library that implements switch user authentication for
HTTP header or IP address authentication.

There is no default.

See “Configuring switch user (SU) for administrators” on page 24.

su-cdsso = su-cdsso-library

Fully qualified path for a library that implements switch user authentication for
cross-domain single sign-on authentication.

There is no default.

See “Configuring switch user (SU) for administrators” on page 24.

su-kerberosv5 = failover-kerberosv5-library

Fully qualified path for a library that implements switch user authentication for
SPNEGO (Kerberos) authentication.

There is no default.

See “Configuring switch user (SU) for administrators” on page 24.

failover-password = failover-password-library

Appendix C. [pam-authn] 219

Fully qualified path to the library that implements failover cookie authentication
for token card authentication.

There is no default.

Example:

AIX: failover-password = /opt/pdweb/lib/libfailoverauthn.a

Other UNIX: failover-password = /opt/pdweb/lib/libfailoverauthn.so

Windows: failover-password = C:\PROGRA~1\Tivoli\PDWebRTE\bin\
failoverauthn.dll

See “Configuring failover authentication” on page 81.

failover-token-card = failover-token-card-library

Fully qualified path to the library that implements failover cookie authentication
for token card authentication.

There is no default.

Example:

AIX: failover-token-card = /opt/pdweb/lib/libfailoverauthn.a

Other UNIX: failover-token-card = /opt/pdweb/lib/libfailoverauthn.so

Windows: failover-token-card = C:\PROGRA~1\Tivoli\PDWebRTE\bin\
failoverauthn.dll

See “Configuring failover authentication” on page 81.

failover-certificate = failover-certificate-library

Fully qualified path to the library that implements failover cookie authentication
for certificate authentication.

There is no default.

Example:

AIX: failover-certificate = /opt/pdweb/lib/libfailoverauthn.a

Other UNIX: failover-certificate = /opt/pdweb/lib/libfailoverauthn.so

Windows: failover-certificate = C:\PROGRA~1\Tivoli\PDWebRTE\bin\
failoverauthn.dll

See “Configuring failover authentication” on page 81.

failover-http-request = failover-http-request-library

220 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Fully qualified path to the library that implements failover cookie authentication
for HTTP header authentication or IP address authentication.

There is no default.

Example:

AIX: failover-http-request = /opt/pdweb/lib/libfailoverauthn.a

Other UNIX: failover-http-request = /opt/pdweb/lib/libfailoverauthn.so

Windows: failover-http-request = C:\PROGRA~1\Tivoli\PDWebRTE\bin\
failoverauthn.dll

See “Configuring failover authentication” on page 81.

failover-cdsso = failover-cdsso-library

Fully qualified path to the library that implements failover cookie authentication
for cross-domain single sign-on authentication.

There is no default.

Example:

AIX: failover-cdsso = /opt/pdweb/lib/libfailoverauthn.a

Other UNIX: failover-cdsso = /opt/pdweb/lib/libfailoverauthn.so

Windows: failover-cdsso = C:\PROGRA~1\Tivoli\PDWebRTE\bin\
failoverauthn.dll

See “Configuring failover authentication” on page 81.

failover-kerberosv5 = failover-kerberosv5-library

Fully qualified path for a library that implements failover cookie authentication
for SPNEGO authentication.

There is no default.

Example:

AIX: failover-kerberosv5 = /opt/pdweb/lib/libfailoverauthn.a

Other UNIX: failover-kerberosv5 = /opt/pdweb/lib/libfailoverauthn.so

Windows: failover-kerberosv5 = C:\PROGRA~1\Tivoli\PDWebRTE\bin\
failoverauthn.dll

See “Configuring failover authentication” on page 81.

post-pwdchg-process = post-pwdchg-process-library

Fully qualified path for a library that implements post password change
processing. This is called by WebSEAL when the user changes a password using
the pkms password change page.

There is no default.

Example:

AIX: post-pwdchg-process = /opt/PolicyDirector/lib/reg2update.a

Other UNIX: post-pwdchg-process = /opt/PolicyDirector/lib/reg2update.so

Windows: post-pwdchg-process = C:\PROGRA~1\Tivoli\POLICY~1\bin\
reg2update.dll

Appendix C. [pam-authn] 221

[aznapi-configuration]

This stanza contains entries for plug-in auditing and cache database configuration.

The auditing configured in this stanza is different to the status and error message
logging configured in the [pdweb-plugins] stanza. The auditing configured in the
[aznapi-configuration] stanza is for the capture of authentication (authn) and
authorization (azn) events.

[aznapi-configuration] stanza

logsize = log size in bytes

The size in bytes that triggers the creation of a new audit log file. If set to 0, a
new log file is not created. If set to a negative integer, a new log file is created
daily regardless of size.

Default value: 2000000

logflush = flush interval in seconds

The interval in seconds at which the audit logs are flushed. The maximum value
is 21600 (6 hours).

Default value: 20

logaudit = {yes|no}

Enable or disable audit logging for the authorization API.

Default value: no

auditlog = audit log file

The name of the audit log file.

Default value: audit.log

auditcfg = {authn|azn|wpi}

Enable or disable one or more component-specific audit records. This entry is
required when auditing is enabled (logaudit = yes). The valid values are:

authn - Capture authentication events.

azn - Capture authorization events.

wpi - Plug-in specific authentication events.

Default value: azn

Example:

auditcfg = azn
auditcfg = authn
auditcfg = wpi

db-file = path to cache file

Full path to the ACL database cache file.

This is not set by default.

Example: db-file =/var/pdwebpi/db/pdwebpi.db

cache-refresh-interval = {disable|default|number of seconds}

222 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The interval, in seconds, between checks for updates to the master authorization
server. The local cache is only rebuilt if an update is detected.

Valid values are:
disable The interval value in seconds is not set.
default An interval of 600 seconds is used.
positive integer The number of seconds between each check of updates to the
master authorization server.

Default value: disable

Example: cache-refresh-interval = 60

listen-flags = {enable|disable}

Enables or disables the reception of policy cache update notifications from the
mast authorization server. A value of enable activates the notification listener.
Set to disable, the notification listener is deactivated. This parameter is set by
the svrsslcfg utility.

Default value: disable

Example: listen-flags = enable

policy-cache-size = max number of cache entries

The maximum size in memory of the policy cache. The policy cache stores:
policies, the relationships between policies and resources, and indications that a
resource has no directly associated policy.

When setting the maximum cache size you should consider the number of
policy objects defined, the number of resources protected, and the available
memory.

A simple algorithm to begin with is:
(number of policy objects * 3) + (number of protected resources * 3).
This value controls how much information is cached.

A larger cache can improve application performance but requires greater
memory. Size is specified as the number of entries.

Default value: The entry is commented by default.

Example: policy-cache-size = 32768

resource-manager-provided-adi = ADI retrieval prefix

Prefixes for ADI retrieval from the HTTP request. These prefixes cannot be
changed or configured in any way.

Default value:

resource-manager-provided-adi = AMWS_qs_
resource-manager-provided-adi = AMWS_hd_
resource-manager-provided-adi = AMWS_pb_

See Chapter 9, “Authorization decision information retrieval,” on page 191.

input-adi-xml-prolog = prolog

Appendix C. [pam-authn] 223

This entry specifies the prolog that is added to the top of the XML document
created using the Access Decision Information (ADI) needed to evaluate a
Boolean authorization rule. If not specified then the default XML prolog is used,
<?xml version=’1.0’ encoding=’UTF-8’?>.

You should read and understand the Boolean authorization rules documentation
before attempting to change this setting from the default.

Default value: The entry is commented by default.

Example: input-adi-xml-prolog = <?xml version=’1.0’ encoding=’UTF-8’?>

xsl-stylesheet-prolog = prolog

This entry specifies the prolog to be added to the top of the XSL stylesheet
created using the XSL text that defines a boolean authorization rule. If not
specified then the default XSL stylesheet prolog is: <?xml version=’1.0’
encoding=’UTF-8’?> <xsl:stylesheet xmlns:xsl=’http://www.w3.org/1999/XSL/
Transfo rm’ version=’1.0’> <xsl:output method = ’text’
omit-xml-declaration=’yes’ indent=’no’/> <xsl:template match=’tex t()’>
</xsl:tem plate>

You should read and thoroughly understand the boolean authorization rules
documentation before attempting to change this setting from the default.

Default value: This entry is commented by default.

Example: xsl-stylesheet-prolog = <?xml version=’1.0’ encoding=’UTF-8’?>
<xsl:stylesheet xmlns:xsl=’http://www.w3.org/1999/XSL/Transfo rm’
version=’1.0’> <xsl:output method = ’text’ omit-xml-declaration=’yes’
indent=’no’/> <xsl:template match=’tex t()’> </xsl:tem plate>

dynamic-adi-entitlement-services = service ID of DynADI Entitlement Service

A list of configured entitlements service IDs queried by the rules engine when
missing ADI is detected during an authorization rule evaluation.

The entries must adhere to the input and output specifications for a dynamic
ADI retrieval service. These are outlined in the Authorization Programmer's Guide.

The entries must refer to existing entitlement services that were loaded using
entries in the [aznapi-entitlement-services] stanza or initialization attribute.

There is no default for this entry.

Example:

dynamic-adi-entitlement-services = dynADI_A
dynamic-adi-entitlement-services = dynADI_B

cred-attribute-entitlement-services = service ID

A list of configured entitlement service IDs called during credential creation to
gather attributes for insertion into the credential. The azn_ent_cred_attrs
entitlement service can be used here to retrieve attributes from the user registry.
The entries must refer to existing entitlement service IDs loaded using service
entries in the [aznapi-entitlement-services] stanza or using the initialization
attribute list.

There is no default for this entry.

Example:
cred-attribute-entitlement-services = TAM_CRED_ATTRS_SVC

stats = component [interval [count]] [logagent]

224 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Enables the recording of plug-in statistics.

component
The statistics component name. Statistics are gather for this plug-in component.
This is a mandatory parameter. Statistics for this component can also be
recorded in a log file by specifying the optional arguments to this command.

interval
The time interval between reports of information. This argument is optional and
results in statistics being sent to a log file. When this option is specified,
statistics are sent, by default, the plug-in log file. You can specify another output
location using the logagent argument. If interval is not specified, no statistics are
sent to any log file. However, the statistic component is still enabled. You can
obtain reports dynamically at any time using pdadmin stats get.

count
The number of reports sent to a log file. This argument is optional and requires
that the interval argument be specified. If interval is specified without count, the
duration of reporting is indefinite. After the count value is reached, reporting to
a log file stops. However, the statistic component is still enabled. You can obtain
reports dynamically at any time using pdadmin stats get.

logagent
Optionally specifies a destination for the statistics information gathered for the
specified component.

There is no default for this entry.

Example:
stats = pdwebpi.authn 40

trace = component [level] [logagent]

Enables the recording of plug-in tracing.

component
The trace component name. Tracing is recorded for this plug-in component. This
is a mandatory parameter. Statistics for this component can also be recorded in a
log file by specifying the optional arguments to this command.

level
Optionally specifies the tracing level.

logagent
Optionally specifies a destination for the statistics information gathered for the
specified component.

There is no default for this entry.

Example:
trace = pdwebpi.authn 7

logcfg = stats.component:destination

Appendix C. [pam-authn] 225

Directs the statistics gathered by the stats configuration entry and directs the
results to a specific destination.

component
The statistics component name. Statistics are gather for this plug-in component.
This is a mandatory parameter. Statistics for this component can also be
recorded in a log file by specifying the optional arguments to this command.

destination
The destination file for statistics gathering.

There is no default for this entry.

Example:
logcfg = stats.pdwebpi.authn:file path=/tmp/authn.log,rollover_size=-
1,flush=20

xsl-max-logical-expressions=numeric value

Limits the number of logical expressions allowed in a rule to a specific numeric
value.

The default is zero, which means no limit.

This option is dependent on the xsl-eval-expressions-check option.

xsl-eval-expressions-check=TRUE|FALSE

Causes the number of logical expressions in a rule to be checked when the rule
is evaluated.

Because this check occurs at runtime, performance can be impacted.

If this option is set to TRUE, the xsl-max-logical-expressions option must be set
to a value greater than zero in order for the rule to be checked.

The default value is FALSE.

[aznapi-entitlement-services]

aznAPI service definitions. For more information refer to the Authorization API
Programmer's Guide.

[aznapi-entitlement-services] stanza

service-id = path-to-dll [& params...}

The service ID is the string used by the aznAPI client to identify the service. The
path-to-dll is the fully qualified path to the DLL containing the service executable
code. Parameters can be specified that are passed to the service when it is
initialized by the aznAPI. Parameters are specified following the '&' symbol.

Default value: AZN_ENT_EXT_ATTR = azn_ent_ext_attr

Example: dynADI = azn_ent_amwebars

226 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

[BA]

The stanza where all configuration parameters related to Basic Authentication are
gathered.

[BA] stanza

basic-auth-realm = "realm name"

The Basic Authentication realm name. Realm names should be enclosed in
double quotes. The realm name is displayed in the authentication dialog.

Default value: "Access Manager"

Example: basic-auth-realm = "Access Manager"

strip-hdr = {ignore|always|unauth}

This entry controls the removal of the BA header from the request.The valid
options are:
ignore: Do nothing to the BA header.
always: Strip the BA header from the request.
unauth: Strip the BA header from the request if the plug-in did not authenticate
the header

Default value: always

Example: strip-hdr = always

add-hdr = {none|gso|supply}

This entry controls the addition of a new BA header to requests. The valid
options are:
none: Do not add a new BA header to the request.
gso: Add a GSO BA header to the request.
supply: Supply a static password or a username, or both a username and
password in the BA header.

When gso is specified, the gso-resource-name entry must be set.

When supply is set, the supply-password entry must be set with the
supply-username entry being optional.

Default value: none

Example: add-hdr = gso

gso-resource-name = name of GSO resource

Contains the name of the GSO resource used to create GSO BA headers.
Specifying a value is optional when add-hdr is set to gso. When add-hdr is set to
gso and gso-resource-name is not set, the name of the virtual host handling the
request is used.

There is no default value for this entry.

Example: gso-resource-name = citrixres01

supply-password = BA password

A value is required here if add-hdr is set to supply. When set, the parameter
specifies the static password used in the created BA header.

There is no default value for this entry.

supply-username = BA user name

Appendix C. [pam-authn] 227

Contains the static user name used in the created BA header. The setting of this
parameter is optional when the add-hdr parameter is set to supply. When the
add-hdr parameter is set to supply and supply-username has not been set (that
is, it remains commented out) the name of the authenticated user is used in the
created BA header.

There is no default value for this entry.

Example:

use-utf8 = {true|false}

This entry defines what character set to use to encode the generated BA header.
If the value is set to false the generated BA header is encoded in the local code
page.

Default value: true

[boolean-rules]

This stanza contains an entry used to affect the outcome of access decisions.

[boolean-rules] stanza

pass-on-rule-failure-reason = {true | false}

This entry either allows or denies failed authorizations to proceed to the
requested backend application accompanied by a reason why the authorization
failed. The back-end application then has the opportunity to proceed with its
own response to the situation.

Set to the default false, or absent, failed authorization decisions will result in the
request being denied.

Set to true, if an authorization fails and a failure reason string associated with
the rule object in the policy database exists, then access proceeds. The failure
reason string is inserted into the HTTP request in the AM_AZN_FAILURE
header.

Default value: false

Example: pass-on-rule-failure-reason = true

[cdsso]

Cross-domain single sign-on (CDSSO) is a method for transferring user credentials
across multiple secure domains. CDSSO is configured in the stanzas: [cdsso],
[cdsso-token-attributes], [cdsso-incoming-attributes] and [cdsso-domain-keys].
CDSSO needs to be configured as an authentication module for CDSSO
functionality to take effect.

[cdsso] stanza

uri = cdsso redirection uri

228 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The special URI tag that indicates a CDSSO redirection and single sign-on.
When a user makes a request to access a resource in another domain using a
custom link on a Web page, the expression specified by the uri entry indicates it
is a CDSSO request.

Therefore using the default, a requested URI might look like,
/pkmscdsso?https://www.domainB.com/index.html

Default value: /pkmscdsso

Example: uri = /pkmscdsso

cdsso-argument = authentication token query string

The name of the query string argument that specifies the authentication token.
This is used in the re-direction URI. For example: remote-uri?PD-REFERER=this-
host&PD-ID=authentication-token

When using the default SSO create and consume modules, (defined in the
[authentication-mechanisms] stanza), the domain name of the host that
generated the URI is used to locate the key to decrypt the token.

Default value: PD-ID

Example: cdsso-argument = PD-ID

authtoken-lifetime = length in seconds

Specifies the lifetime of the authentication token in seconds. The token is
considered invalid once it has expired and is no longer used. This prevents
replay attacks by setting a value short enough to prevent the token from being
stolen and replayed within its lifetime.

If specifying this value on a pre-virtual host basis, you need to take into
consideration any clock skew between participating domains.

Default value: 180

Example: authtoken-lifetime = 120

use-utf8 = {true | false}

Enables or disables the encoding of strings in UTF8 format within the CDSSO
token. This option only affects CDSSO tokens created and consumed by the
default SSO create and consume libraries.

Default value: true

Example: use-utf8 = true

[cdsso-token-attributes]

This stanza is used when you require credential attributes to be included in
CDSSO authentication tokens. It defines attributes, specified for a specific peer or
domain, that are to be included in CDSSO authentication tokens. The inclusion of
the specified attributes will only take place if the default sso-create and
sso-consume libraries (defined in the [authentication-mechanisms] stanza), are in
use.

The default name of this stanza is derived from the module name for the
pdwpi-cdsso-module (that is, cdsso) defined in the [modules] stanza. It is of the
form [cdsso-module-name-token-attributes].

Appendix C. [pam-authn] 229

Credential attributes matching the patterns specified in this stanza for a target host
or domain are included in CDSSO authentication tokens constructed for that target
host or domain.

[cdsso-token-attributes] stanza

domain-name = pattern-1, pattern-2, ..., pattern-n

The patterns specified in this entry relate to the credential attributes for a target
host or domain that you want included in CDSSO authentication tokens
constructed for that target host or domain.

Only a single value for each attribute is used, and only string values are
supported. Other types of credential attribute values are ignored.

Patterns can be specified using shell-style wildcards.

A default set of attributes can be configured with a default entry in this stanza.
This set of attributes is used when there is no other entry matching a particular
target host. If the default entry is not present, then no attributes is included in
tokens by default.

There is no default for this entry.

Example:

ibm.com = attrprefix_*, *name*
tivoli.com = *_attrsuffix, an_exact_attribute

[cdsso-incoming-attributes]

This stanza defines the sets of attributes to be accepted and rejected from incoming
CDSSO authentication tokens. Unlike the outgoing attributes configured in
[cdsso-token-attributes], incoming attributes cannot be configured for a specific
peer or domain. Only one set of attribute patterns can be configured, and these
patterns are applied to incoming tokens regardless of source.

This processing only takes place if the default sso-create and sso-consume
libraries (defined in the [authentication-mechanisms] stanza), are in use.

The default name of this stanza is derived from the module name for the
pdwpi-cdsso-module (that is, cdsso) defined in the [modules] stanza. It is of the
form [cdsso-module-name-incoming-attributes].

[cdsso-incoming-attributes] stanza

attribute pattern = {preserve|refresh}

Attributes in CDSSO authentication tokens that match a refresh entry are
removed from the token before the CDMF library is called to map the remote
user into the local domain. Attributes matching a preserve entry, or matching
none of the entries, are kept. If no entries are configured, then all attributes are
kept.

There is no default for this entry.

Example:

*_attrsuffix = preserve
name - refresh

230 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

[cdsso-domain-keys]

This stanza defines the keys to use for CDSSO. The name of this stanza is derived
from the module name for the pdwpi-cdsso-module defined in the [modules]
stanza. It is of the form [cdsso-module-name-domain-keys].

[cdsso-domain-keys] stanza

domain name = key file

Keys for domains that are participating in CDSSO.

There is no default for this entry.

Example:

ibm.com= /keys/ibm.com.key
tivoli.com = /keys/tivoli.com.key

[common-modules]
This stanza is where the authentication methods for incoming requests are
configured.

See “Configuring authentication” on page 49 for more information about the
[common-modules] stanza

[common-modules] stanza

pre-authzn = {boolean-rules | switch-user | dynurl | acctmgmt | cred-refresh |
forms | token | ecsso | login-redirect | ext-auth-int}

Configured pre-authorization modules perform specific processing on requests
prior to access to a requested resource is authorized.

Pre-authorization modules provide functions that do not require authorization
or they support capabilities that require access to the request prior to the
authorization decision.

Example:

pre-authzn = accmgmt
pre-authzn = switch-user

authentication = {BA | cdsso | cert | ecsso | failover | forms | http-hdr |
ip-addr | iv-headers | ltpa | ltpa2 | spnego | token | ext-auth-int} On Windows,
ntlm and web-server-authn are also available.

This entry specifies the modules used for authenticating clients.

The [authentication-levels] stanza takes precedence over the order of the
authentication modules definitions in the [common-modules] stanza.

Example:

authentication = BA
Authentication = forms

session = {BA | http-hdr | ip-addr | iv-headers | ltpa | ltpa2 | session-cookie |
ssl-id | dsess}

Appendix C. [pam-authn] 231

Incoming requests are examined for existing authenticated session information.
This entry specifies the information used for identifying sessions.

Example:

session = session-cookie
session = ltpa

post-authzn = {BA | boolean-rules | cdsso | failover | forms | fsso | iv-headers |
ltpa | ltpa2 | tag-value | ext-auth-int}

This entry specifies the modules to be used if further processing of requests is
required after the authorization decision has been made.

Example:

post-authzn = BA
post-authzn = failover

response = {fsso | ext-auth-int}

Specifies the module to use if the plug-in is to process responses from a Web
server prior to passing an alternative response to the user.

Example: response = ext-auth-int

transaction = {web-log}

Specifies a module that is used for all requests.

Example: transaction = web-log

[cred-refresh]

The plug-in can be configured to refresh credential information for a user while
keeping their session current. This is useful for updating a user's access without
having them logout of their current session. To enable credential refresh
functionality the cred-refresh module needs to be configured as a pre-authorization
module.

The entries in the [cred-refresh] stanza determine which attributes to preserve
from the original credential and those to refresh in the new credential.

This stanza can be specified for particular virtual hosts by creating a stanza of the
form, [cred-refresh:virtual-host].

[cred-refresh] stanza

attribute pattern = {preserve | refresh}

232 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

For an actual attribute or a matching pattern specify whether that attribute or
those matching the pattern should be preserved or refreshed.

Preserved attributes are retained from the old credential into the new. Refreshed
attributes are reloaded into the new credential.

The standard plug-in pattern-matching rules apply except character comparisons
aren't case sensitive. Rules that appear earlier in the stanza will have precedence
over those that appear later. If an attribute does not match any of the patterns, it
is refreshed by default.

The following attributes are preserved regardless of the configuration in this
stanza:

AZN_CRED_AUTHNMECH_INFO
AZN_CRED_BROWSER_INFO
AZN_CRED_IP_ADDRESS
AZN_CRED_PRINCIPAL_NAME
AZN_CRED_QOP_INFO
AZN_CRED_IP_FAMILY
AZN_CRED_NETWORK_ADDRESS_BIN
AZN_CRED_NETWORK_ADDRESS_STR
Attributes marked as read-only

Default value:

AUTHENTICATION_LEVEL = preserve
AZN_CUSTOM_ATTRIBUTES = preserve
tagvalue_* = preserve

[dsess]

The [dsess] stanza contains the configuration entries for the distributed session
module. The DSESS module maintains session state information using a cookie and
utilizes the session management server for distributing session information.

An number of these entries use the term, replica sets. Remember, replica sets are
organized groups of replicated Web security servers.

[dsess] stanza

use-same-cookie = (yes | no)

This entry specifies whether the HTTP and HTTPS protocols should use the
same session ID or different session IDs.

When this entry is set to yes, the cookie name specified in http-cookie-name is
used for sessions created of either HTTP or HTTPS, and the value specified for
the https-cookie-name configuration parameter is ignored.

Default value: no

Example: use-same-cookie = yes

dsess-replica-name = unique web server name

This entry uniquely identifies the current installation within the replica set.

This entry is disabled by default. The entry defaults to the authorization server
name when not otherwise set.

Example: dsess-replica-name = web_server_1

dsess-replica-set = unique replica set name

Appendix C. [pam-authn] 233

The name of the replica set to which this installation belongs.

This entry is disabled by default. If no replica set is specified the name defaults
to that of the virtual host.

Example: dsess-replica-set = replica_set_1

dsess-sess-id-pool-size = max number session IDs

The maximum number of session IDs that are pre-allocated within the session
ID pool.

Default value: 512

Example: dsess-sess-id-pool-size = 512

dsess-propagate-unauth = (true | false)

Enables or disables the storage of unauthenticated sessions in the session
management server (SMS). Enabling this option means the authentication
process can be distributed across multiple servers. Caution should be used,
however, because it opens the SMS to a denial of service attack.

Default value: false

Example: dsess-propagate-unauth = true

cookie-for-domain = (true | false)

Set to true the session cookie is available across the domain. Set to false it is
available only within the scope of the current session.

Default value: false

Example: cookie-for-domain = true

dsess-cluster-name = cluster name

The name of the SMS cluster to which this SMS server belongs. This field must
be defined and reference an existing [dsess-cluster] stanza, qualified by the
value of this entry.

There is no default value.

Example:

dsess-cluster-name = dsess

dsess-displacement-form = form name

The name of the form presented to the user to confirm a session displacement.

If no form name is configured the session displacement will not take place.

An entry can be either:

v A macro HTML file located on the translated plug-in HTML directory,
install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

Refer to “Macro support” on page 9 for information on plug-in supported
macros.

Default value: session_displacement.html

Example: dsess-displacement-form =http://www.organization.com/TAM/dsess/
displace.html

dsess-displacement-uri = displacement uri

234 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The URI that accepts the response from the session displacement form
configured in the entry, dsess-displacement-form.

Default value: /dsess-displacement.form

Example: dsess-displacement-uri = /dsess-displacement.form

http-cookie-name = session ID name

Specifies the name of session established over HTTP.

Default value: AM-DSESS-SESSION-ID

Example: http-cookie-name = AM-DSESS-SESSION-ID

https-cookie-name = session ID name

Specifies the name of sessions established over HTTPS.

Default value: AM-DSESS-SECURE-SESSION-ID

Example: https-cookie-name = AM-DSESS-SECURE-SESSION-ID

[dsess-cluster]

The [dsess-cluster] stanza contains all of the defaults for a definition of a cluster of
SMS (distributed session) servers.

[dsess-cluster] stanza

server = ([0-9],)URL

A specification for a single SMS server which is a member of this cluster. Values
of this entry are defined as ([0-9],)URL, where the first digit (if present)
represents the priority of the server within the cluster (9 being the highest, 0 the
lowest). If the priority is not assigned, 9 is assumed.

The URL can be any well-formed HTTP or HTTPS URL. There is no default
URL value.

Multiple values can be specified for failover and load balancing purposes.
Multiple servers can be set at the same priority value. The complete set of these
server entries defines the membership of the cluster.

Example: server = 9,http://sms.example.com/Dsess/services/Dsess

response-by = period in seconds

The length of time in seconds to maintain a connection to the Web service while
waiting for session events.

This entry is disabled by default. There is no default value.

response-by = 20

basic-auth-user = user_name

The name of the user that is included in the basic authentication header.

This entry is optional. There is no default value.

basic-auth-user = userA

basic-auth-passwd = password

Appendix C. [pam-authn] 235

The password that is included in the basic authentication header.

This entry is optional. There is no default value.

basic-auth-passwd = myPassword

handle-pool-size = maximum number of cached handles

The maximum number of cached handles used during communications with the
session management server (SMS).

Default value: 10

Example: handle-pool-size = 10

handle-idle-timeout = period in seconds

The period of time, in seconds, the client waits before am idle handle will be
removed from the handle pool cache.

Example: handle-idle-timeout = 240

timeout = period in seconds

The period of time, in seconds, the client waits for a response from the session
management server (SMS).

Default value: 30

Example: timeout = 240

The following SSL entries are only required if:

1. At least on server entry indicates that SSL is to be used; that is, starts with https:.

2. A certificate is required other than the one used for policy server communication. Details of the
default certificate can be found in the [ssl] stanza of the IBM Security Access Manager for
Web configuration file, pd.conf.

ssl-keyfile = fully qualified path to keyfile

The name of the key database file which houses the client certificate to be used.

If no value is specified the value for the entry, ssl-keyfile, from the [ssl] stanza
of the IBM Security Access Manager for Web configuration file, pd.conf.

The default relates to the certificate.

Example for UNIX: ssl-keyfile = var/pdwebpi/keytab/dsess_key.kdb

ssl-keyfile-stash = fully qualified path to password stash file

The name of the password stash file for the key database file.

If no value is specified the value for the entry, ssl-keyfile-stash, from the [ssl]
stanza of the IBM Security Access Manager for Web configuration file, pd.conf.

The default relates to the certificate.

Example for UNIX: ssl-keyfile-stash = var/pdwebpi/keytab/dsess_key.sth

ssl-keyfile-label = client certificate label

The label of the client certificate within the key database.

If no value is specified the value for the entry, ssl-keyfile-label, from the [ssl]
stanza of the IBM Security Access Manager for Web configuration file, pd.conf.

The default relates to the certificate.

Example: ssl-keyfile-label = Distributed Session

236 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

ssl-valid-server-dn= domain name

Specifies the DN of the server (obtained from the server SSL certificate) which
will be accepted. If no entry is configured all DNs will be considered to be
valid. Multiple DNs can be specified by including multiple configuration entries
in this name.

This configuration entry is optional.

There is no default value.

Example ssl-valid-server-dn = cn=was61.ibm.com,0=ibm,c=us

ssl-fips-enabled = (yes | no)

Determines whether Federal Information Process Standards (FIPS) mode is
enabled on the session management server.

If no configuration entry is present, the setting from the ssl-fips-enabled entry
in the [ssl] stanza of the policy server takes effect. When set to yes (or when the
setting in the policy server configuration file is set to yes), Transport Layer
Security (TLS) version 1 (TLSv1) is the secure communication protocol used.
When set to no (or the setting in the policy server configuration file is set to no),
SSL version 3 (SSLv3) is the secure communication protocol used.

This configuration entry is optional.

There is no default value. If a FIPS level other than that set for the policy server
is required, the administrator must manually edit the configuration file to
change this value.

Example ssl-fips-enabled = no

[dsess-cluster:cluster_name]

This stanza defines the cluster of SMS servers associated with the configuration
that is defined for cluster_name in the default [dsess] stanza.

The valid entries and their associated values are the same as for the [dsess-cluster]
stanza above.

Note: If any entries are missing for this stanza, they will be retrieved from the
unqualified [dsess-cluster] stanza.

[dsess-cluster:cluster_name] stanza

server = ([0-9],)URL

A specification for a single SMS server which is a member of this cluster. Values
of this entry are defined as ([0-9],)URL, where the first digit (if present)
represents the priority of the server within the cluster (9 being the highest, 0 the
lowest). If the priority is not assigned, 9 is assumed.

The URL can be any well-formed HTTP or HTTPS URL. There is no default
URL value.

Multiple values can be specified for failover and load balancing purposes.
Multiple servers can be set at the same priority value. The complete set of these
server entries defines the membership of the cluster.

Example: server = 9,http://sms.example.com/Dsess/services/Dsess

response-by = period in seconds

Appendix C. [pam-authn] 237

The length of time in seconds to maintain a connection to the Web service while
waiting for session events.

This entry is disabled by default. There is no default value.

response-by = 20

basic-auth-user = user_name

The name of the user that is included in the basic authentication header.

This entry is optional. There is no default value.

basic-auth-user = userA

basic-auth-passwd = password

The password that is included in the basic authentication header.

This entry is optional. There is no default value.

basic-auth-passwd = myPassword

handle-pool-size = maximum number of cached handles

The maximum number of cached handles used during communications with the
session management server (SMS).

Default value: 10

Example: handle-pool-size = 10

handle-idle-timeout = period in seconds

The period of time, in seconds, the client waits before an idle handle will be
removed from the handle pool cache.

Example: handle-idle-timeout = 240

timeout = period in seconds

The period of time, in seconds, the client waits for a response from the session
management server (SMS).

Default value: 30

Example: timeout = 240

The following SSL entries are only required if:

1. At least on server entry indicates that SSL is to be used; that is, starts with https:.

2. A certificate is required other than the one used for policy server communication. Details of the
default certificate can be found in the [ssl] stanza of the IBM Security Access Manager for Web
configuration file, pd.conf.

ssl-keyfile = fully qualified path to keyfile

The name of the key database file which contains the client certificate to be
used.

If no value is specified the value for the entry, ssl-keyfile, from the [ssl] stanza
of the IBM Security Access Manager for Web configuration file, pd.conf.

The default relates to the certificate.

Example for UNIX: ssl-keyfile = var/pdwebpi/keytab/dsess_key.kdb

ssl-keyfile-stash = fully qualified path to password stash file

238 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The name of the password stash file for the key database file.

If no value is specified the value for the entry, ssl-keyfile-stash, from the [ssl]
stanza of the IBM Security Access Manager for Web configuration file, pd.conf.

The default relates to the certificate.

Example for UNIX: ssl-keyfile-stash = var/pdwebpi/keytab/dsess_key.sth

ssl-keyfile-label = client certificate label

The label of the client certificate within the key database.

If no value is specified the value for the entry, ssl-keyfile-label, from the [ssl]
stanza of the IBM Security Access Manager for Web configuration file, pd.conf.

The default relates to the certificate.

Example: ssl-keyfile-label = Distributed Session

ssl-valid-server-dn= domain name

Specifies the DN of the server (obtained from the server SSL certificate) which
will be accepted. If no entry is configured all DNs will be considered to be
valid. Multiple DNs can be specified by including multiple configuration entries
in this name.

This configuration entry is optional.

There is no default value.

Example ssl-valid-server-dn = cn=was61.ibm.com,0=ibm,c=us

ssl-fips-enabled = (yes | no)

Determines whether Federal Information Process Standards (FIPS) mode is
enabled on the session management server.

If no configuration entry is present, the setting from the ssl-fips-enabled entry
in the [ssl] stanza of the policy server takes effect. When set to yes (or when the
setting in the policy server configuration file is set to yes), Transport Layer
Security (TLS) version 1 (TLSv1) is the secure communication protocol used.
When set to no (or the setting in the policy server configuration file is set to no),
SSL version 3 (SSLv3) is the secure communication protocol used.

This configuration entry is optional.

There is no default value. If a FIPS level other than that set for the policy server
is required, the administrator must manually edit the configuration file to
change this value.

Example ssl-fips-enabled = no

[dynurl]

This stanza contains the definitions for the dynamic URL pre-authorization
module.

Stanzas for specific virtual hosts can be created using the format
[dynurl:virtual-host].

[dynurl] stanza

Security Access Manager object = pattern

Appendix C. [pam-authn] 239

The patterns defined here are matched against incoming requests so that URLs
generated dynamically by Web applications can be protected against unwanted
use or access.

Entries which occur earlier in the stanza have precedence over those that occur
later in the stanza. All objects are relative to the virtual host branch,
/PDWebPI/virtual-host, and all patterns are relative to the virtual host
(http://virtual-host or https://virtual-host)

There are no default values for the stanza.

Example:

/servershutdown =/servercontrol.asp \?*action=shutdown*
/serverreset =/servercontrol.asp \?*action=reset*
/helppages =*help.html

[ecsso]

e-Community single sign-on (eCSSO) allows users to access resources across
multiple servers in multiple domains without requiring re-authentication. This
stanza holds the configuration entries for eCSSO.

The stanza name must match the module name for the pdwpi-ecsso-module
defined in the [modules] stanza.

For correct handling of the logout URI (/pkmslogout by default) with regard to
e-Community Single Sign-On, the eCSSO pre-authorization module must be
configured before the acct-mgmt pre-authorization module.

The name of this stanza is derived from the module name assigned to
pdwpi-ecsso-module in the [modules] stanza. It is of the form
[ecsso-module-name].

This stanza can be specified for particular virtual hosts by creating a stanza of the
form, [ecsso-module-name:virtual-host]. For example, [ecsso:lotus.com-http].

[ecsso] stanza

e-community-name = name

An e-community as it relates to eCSSO is a group of distinct domains. This
group is given a name using this entry. The name is displayed in vouch-for
tokens and requests. This name should be consistent across all participants in
the e-community.

Default value: Unless specified, the e-community name defaults to the module
name configured in the [modules] stanza.

Example: e-community-name = ibm_ecommunity

is-master-authn-server = {yes | no}

240 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

In eCSSO, a master authentication server (MAS) is assigned within the 'home
domain' to perform all authentication of users. This should be the only task of
the master authentication server.

By setting this entry to yes you are indicating that the current server is the
master authentication server. All other servers in the e-community should have
this entry set to no. When set to yes, this server accepts vouch-for requests from
other plug-in instances whose domain keys are listed in the
[ecsso-domain-keys] stanza.

Default value: no

Example: is-master-authn-server = yes

master-authn-server = server name

This entry indicates the fully qualified domain name of the master
authentication server in the e-community. This entry is mandatory if
is-master-authn-server is set to no.

There is no default value for this entry.

Example: master-authn-server = www.ibm.com

master-http-port = port number

When eCSSO authentication is configured over the HTTP protocol, this entry
indicates the port on the master authentication server that listens for the HTTP
requests. This entry is ignored if the server is the master authentication server.

Default value: 80

Example: master-http-port = 80

master-https-port = port number

When eCSSO authentication is configured over the HTTPS protocol, this entry
indicates the port on the master authentication server that listens for HTTPS
requests. This parameter is ignored if the server is the master authentication
server.

Default value: 443

Example: master-https-port = 443

vf-token-lifetime = time period in seconds

The vouch-for token lifetime in seconds. Clock skew between participating
servers needs to be taken into consideration when setting this entry as the token
lifetime is calculated using the creation time stamped on the cookie.

Default value: 180

Example: vf-token-lifetime = 120

vf-url = vouch-for URL

The vouch-for URL that is contained in a vouch-for request to identify it as
such. For example, using the default entry a vouch-for request would have the
format: https://vouch_for_server /pkmsvouchfor?ecommunity_name&target_url

Default value: /pkmsvouchfor

An extended URL can be configured. For example: vf-url =
/ecommA/pkmsvouchfor

vf-argument = argument name

Appendix C. [pam-authn] 241

The argument name of the vouch-for token as it appears in the vouch-for reply.
The default value of PD-VF should only be changed if custom create and
consume modules are in use and a different argument name is used to represent
the vouch-for token.

Default value: PD-VF

Example: vf-argument = PD-VF

allow-login-retry = {true | false}

Enables or disables the retry of a user login when an unauthenticated user is
redirected to the master server for authentication.

Set to true, the master server allows users to re-enter their username/password
after an initial failed attempt. Set to false, the user is redirected back to the slave
server without vouching for the user.

Default value: true

Example: allow-login-retry = true

use-utf8 = {true | false}

Enables or disables UTF8 string encoding within the ECSSO vouch-for tokens
and e-community cookies. The value of this parameter only affects vouch-for
tokens created and consumed by the default SSO create and consume libraries.

Default value: true

Example: use-utf8 = true

store-slave-request = {true | false}

242 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

This parameter is provided for backwards compatibility only.

In Tivoli Access Manager for e-business versions 5.1 and earlier, eCSSO
recorded information about a request by a slave for authentication at both the
master and the slave.

This ensured that the master could remember the exact URL that was requested
at the slave, so that when authentication was complete the user could be
correctly redirected back to the originally requested URL at the slave. This was
necessary when the authentication mechanism used was not capable of
recording such information.

Currently there are no authentication mechanisms that require this, although old
(pre-5.1) style forms-based logins did require this (before the ability to record
this information in hidden fields of the login forms was added).

At the master, this can cause problems if a stateful authentication scheme is in
use and parallel requests for authentication from the same browser are being
processed and session cookies are used to maintain session state. In particular
this affects NTLM authentication on Windows systems.

At both the master and the slave this will also require the storage of session
data before authentication is complete. This can cause problems when using the
Session Management Server, since session data is only replicated for
authenticated sessions.

By default information about slave requests is not stored at either the master or
the slave.

This parameter can be overridden on a per-virtual host basis.

Default value: false

Example: store-slave-request = false

disable-ec-cookie = {yes | no}

When set to yes, this option will disable the use of the e-community cookie, and
only the MAS will generate vouch-for tokens.

This will force the single-sign-on process to always use the MAS, allowing the
MAS to detect all hosts that sign on across the e-communities. This supports
customers who wish to construct their own eCSSO Single Sign Off solution.

Disabling eCSSO cookies may provide extra security by ensuring that any
compromise of a user's session in a slave domain will not result in
impersonation of that user in either the master domain or other slave domains.

Default value: no

Example: disable-ec-cookie = no

no-mas-logout-uri = /pkmslogout-nomas

Appendix C. [pam-authn] 243

This configuration entry is used to define the URI of a new form of the
/pkmslogout page. This page will operate identically to /pkmslogout, except it
does not redirect to the MAS's /pkmslogout page after logging out of the
current host.

Instead it simply performs the normal logout success process and returns the
page, as defined by the no-mas-logout-success configuration entry. This
supports customers wanting to use alternate methods of signing out all the
hosts at the MAS.

Instead of using the technique by which each host to be signed out is visited
sequentially by the MAS, all hosts could be visited simultaneously using
features of HTML like iframes. A single page of iframes, one for each host to
sign out, could be generated at the MAS.

Each form would access /pkmslogout-nomas of each host. If they accessed
/pkmslogout of each host, then each iform would be redirected back to the
MAS, making it difficult to control the ensuing /pkmslogout recursion.

This single page signout method would be more robust in the case of a single
host failing to respond. If a single host failed using the sequential sign out
process then the sign out sequence would halt possibly leaving some hosts
signed in.

The default value is commented out by default: /pkmslogout-nomas

Example: no-mas-logout-uri = /pkmslogout-nomas

no-mas-logout-success = logout_success.html

This configuration entry is used to define the action which is taken by the server
after the client has been successfully logged out via the no-mas-logout-uri. The
entry should correspond to either a macro HTML file, which is relative to the
translated PDWebPI HTML directory (for example, /opt/pdwebpi/nls/html/C/
utf-8), or a valid redirect URI.

The redirect URI can be either absolute or server-relative, and can also contain
macros. Be aware however that some clients impose restrictions on the
maximum length of a URI; care should be taken to include only those URI
elements that are required.

Default value: logout_success.html

Example: no-mas-logout-success = logout_success.html

[ecsso-domain-keys]

e-Community single sign on uses keys to encrypt and decrypt the data exchanged
between participating servers in an e-community. This stanza defines those keys.

The name of this stanza is derived from the module name assigned to
pdwpi-ecsso-module in the [modules] stanza. It is of the form
[ecsso-module-name-domain-keys].

This stanza can be specified for particular virtual hosts by creating a stanza of the
form, [ecsso-module-name-domain-keys:virtual-host].

[ecsso-domain-keys] stanza

domain name = key file

244 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Defines the keys to use when communicating with participants from the
specified domains within an e-community.

Configuration of the MAS involves defining the keys for each domain for which
it is the master. Configuration of e-community members other than the MAS
involves defining the key for the domain and for the MAS. You must specify the
fully qualified domain names for the servers and the absolute path names for
the key file locations.

There is no default value for this entry.

Example:

ibm.com =/abc/xyz/ibm-tivoli.key
lotus.com =/abc/xyz/lotus-tivoli.key
tivoli =/abc/xyz/tivoli.key

[ecsso-incoming-attributes]

This stanza defines the attributes to accept from incoming eCSSO vouch-for tokens.

The name of this stanza is derived from the module name assigned to
pdwpi-ecsso-module in the [modules] stanza. It is of the form
[ecsso-module-name-incoming-attributes].

This stanza can be specified for particular virtual hosts by creating a stanza of the
form, [ecsso-module-name-incoming-attributes:virtual-host].

[ecsso-incoming-attributes] stanza

attribute pattern = {preserve | refresh}

This stanza defines the sets of attributes to be accepted and those to be rejected
from incoming eCSSO vouch-for tokens. Unlike the outgoing attributes
configuration, incoming attributes cannot be configured for a specific peer or
domain.

Only one set of attribute patterns can be configured, and these patterns are
applied to incoming tokens regardless of source.

This processing only takes place if the default SSO token create and consume
libraries (defined in the [authentication-mechanisms] stanza) are in use.

Attributes in eCSSO vouch-for tokens that match a 'refresh' entry are removed
from the token before the CDMF library is called to map the remote user into
the local domain. Attributes matching a 'preserve' entry, or matching none of the
entries, are kept. If no entries are configured, then all attributes are kept.

There are no defaults for this entry.

Example:

attrprefix_* = preserve
*_aatrsuffix = refresh

[ecsso-token-attributes]

This stanza specifies the credential attributes to include in eCSSO vouch-for tokens.

Appendix C. [pam-authn] 245

The name of this stanza is derived from the module name assigned to
pdwpi-ecsso-module in the [modules] stanza. It is of the form
[ecsso-module-name-token-attributes].

This stanza can be specified for particular virtual hosts by creating a stanza of the
form, [ecsso-module-name-token-attributes:virtual-host].

[ecsso-token-attributes] stanza

domain name = pattern 1, pattern 2, ... , pattern-n

Entries in this stanza define those credential attributes to be included in eCSSO
vouch-for tokens. The credential attributes to include are specified by peer or
domain.

This processing only takes place if the default SSO token create and consume
libraries (defined in the [authentication-mechanisms] stanza) are in use.

There are no default values for this entry.

Example:

ibm.com= attrprefix_*, *name*
tivoli.com = *_attrsuffix, some_exact_attribute

[error-pages]

This stanza contains a mapping of plug-in error codes to either a macro-enabled
file or URL. The error codes can be obtained from the IBM Security Access Manager
for Web: Error Message Reference.

The values specified can be either:
v A macro HTML file located on the translated plug-in HTML directory,

install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

See “Macro support” on page 9 for information on plug-in supported macros.

The pages displayed during account management operations such as changing
user passwords, and logging out are configured using the [acctmgmt] stanza.

[error-pages] stanza

0x35F02188 = error page

The page displayed when an account is locked.

Default value: acct_locked.html

Example: 0x35F02188 = http://www.organization.com/TAM/errors/
acc_lock_error_page.html

0x35F021BE = error page

The page displayed when an account is temporarily disabled due to failed login
attempts.

Default value: retry_limit_reached.html

Example: 0x35F021BE = http://www.organization.com/TAM/errors/
retry_limit_error_page.html

246 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

0x35F0205D = error page

The page displayed when the user successfully authenticates using a forms login
URI.

Default value: login_success.html

Example: 0x35F0205D = http://www.organization.com/TAM/errors/
login_succes_page.html

0x35F02421 = error page

The page displayed when the concurrent session limit has been reached for the
user.

Default value: session_limit_reached.html

Example: 0x35F02421 = http://www.organization.com/TAM/errors/
sees_lim_error_page.html

default = error page

The page displayed when an error condition has been detected that does not
match any other configured error response.

Default value: azn_srv_error.html

Example: default = http://www.organization.com/TAM/errors/
unspec_error_page.html

[ext-auth-int]

The external authentication interface module allows a credential to be created
based on information supplied by a back-end application's authentication
information.

[ext-auth-int] stanza

auth-url = url

This entry specifies the URL to which a user is redirected to for authentication.
This URL should not be protected by the plug-in and should be allowed to pass
through to the external authentication application.

The values specified can be either:

v A macro HTML file located on the translated plug-in HTML directory,
install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

See “Macro support” on page 9 for information on plug-in supported macros.

There is no default value for this entry.

Example: auth-url = /eai/app?orig-url=%URL%

trigger-url = url

Appendix C. [pam-authn] 247

Once the client has authenticated, using the URL configured in the auth-url
entry, the client is redirected to the trigger URL configured in this entry. This
trigger URL indicates that the response should be used to generate a credential.

The configured URL can contain the following special characters which are used
when matching the request URL:

1. ?: match any single character;

2. *: match any number of characters;

3. \: turn off the special meaning of the character that follows;

4. [] : match any one of the enclosed characters.

There is no default value for this entry.

Example:

trigger-url = uri = /eai/page.asp*login*
trigger-url = uri = /cgi-bin/*

use-redirect-url-first = {true | false}

This Boolean value controls whether the redirect URL, provided in the
authentication response from the EAI application, will take precedence over the
originally requested URL in the post-authentication redirect.

Default value: false

Example: use-redirect-url-first = false

The plug-in examines the corresponding server response for the following headers. These
are the headers containing authentication data used to authenticate the user.

redirect-url-hdr-name = am-eai-redir-url
pac-hdr-name = am-eai-pac
pac-svc-id-hdr-name = am-eai-pac-svc
user-id-hdr-name = am-eai-user-id
user-auth-level-hdr-name = am-eai-auth-level
user-qop-hdr-name = am-eai-qop
user-ext-attr-list-hdr-name = am-eai-xattrs

[failover]

This stanza contains the configuration details for the failover cookies authentication
and post-authorization modules.

[failover] stanza

failover-cookies-keyfile = path to key file

Declares the path to the key file used to encrypt and decrypt credential data in
the failover cookie.

Default value: failover.key

Example:

failover-cookie-lifetime = time period in minutes

The lifetime of a failover cookie in minutes.

Default value: 30

Example: failover-cookie-lifetime = 40

enable-failover-cookie-for-domain = {true | false}

248 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Enables the failover cookie for the whole domain by setting a domain HTTP
cookie.

Default value: false

Example: enable-failover-cookie-for-domain = true

failover-update-cookie = number

The following entry defines how often the failover cookie activity timestamp is
updated. Set to 0, the failover cookie is updated every request. If set to a
positive integer, the failover cookie is updated after that length of time, in
seconds, has elapsed. If set to a negative integer, the failover cookie will only be
updated when authentication occurs, or when the credential is refreshed.

Default value: -1

Example: failover-update-cookie = 30

failover-require-lifetime-timestamp-validation = {true | false}

This entry determines whether lifetime timestamp validation is required for
failover authentication to succeed.

Set to true, the lifetime timestamp is required. If it is missing or invalid, failover
authentication will fail. Set to false, the timestamp is not required, but if it exists
and is invalid, failover authentication will fail.

If the plug-in needs to accept failover cookies generated by an earlier version of
the plug-in or WebSEAL, this option needs to be set to true.

Default value: false

Example: failover-require-lifetime-timestamp-validation = true

failover-require-activity-timestamp-validation = {true | false}

This entry determines whether activity timestamp validation is required for
failover authentication to succeed.

Set to true, the activity timestamp is required. If it is missing or invalid, failover
authentication will fail. Set to false, the timestamp is not required, but if it exists
and is invalid, failover authentication will fail.

If the plug-in needs to accept failover cookies generated by an earlier version of
the plug-in or WebSEAL, this option needs to be set to true.

Default value: false

Example: failover-require-activity-timestamp-validation = true

use-utf8 = {true | false}

Enables or disables UTF8 string encoding for the failover cookie. This entry
needs to be set to false when the plug-in needs to accept failover cookies
generated by an earlier version of the plug-in or WebSEAL.

Default value: true

Example: use-utf8 = false

use-same-cookie = {true | false}

Appendix C. [pam-authn] 249

This entry specifies whether the HTTP and HTTPS protocols use the same
session or not.

If set to true, the cookie to be used for both HTTP and HTTPS is defined in the
http-cookie-name entry.

Default value: false

Example: use-same-cookie = false

http-cookie-name = PD-ID

Name of the cookie to use for cookies established over HTTP or - if
use-same-cookie is set to false - over both HTTP and HTTPS.

Default value: PD-ID

Example: http-cookie-name = PD-ID

https-cookie-name = PD-ID

Name of the cookie to use for cookies established over HTTPS.

If use-same-cookie is enabled then this value is ignored and the cookie name
specified by the http-cookie-name parameter is used for cookies created for
either HTTP or HTTPS.

Default value: PD-ID

Example: https-cookie-name = PD-ID

[failover-add-attributes]

This stanza defines the attributes to add from the original credential into the
failover cookie.

This stanza can be defined for specific virtual hosts by creating it in the format,
[failover-add-attributes:virtual-host].

[failover-add-attributes] stanza

attribute pattern = add

These entries define which attributes the plug-in should transfer from the
original credential into the failover cookie.

There can be multiple attribute entries.

The standard plug-in pattern matching rules apply except that character
comparisons are not case sensitive.

Rules that appear earlier in the stanza take precedence over those that appear
later in the stanza. If an attribute does not match any of the entries then it is not
included in the failover cookie. If an attribute is not present in the credential
then it will not be added to the failover cookie, regardless of the entries in this
stanza.

The AUTHENTICATION_LEVEL and AZN_CRED_AUTH_METHOD
attributes are always added to the failover cookie regardless of the entries in
this stanza.

There are no default values for this stanza.

Example: my_value_* = add

250 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

[failover-restore-attributes]

This stanza defines the attributes requiring transfer from the failover cookie to the
credential during user authentication with a failover cookie.

This stanza can be defined for specific virtual hosts by creating it in the format,
[failover-restore-attributes:virtual-host]. The values in such a stanza —
defined for a specific virtual host — override the values in the standard
[failover-restore-attributes] stanza.

[failover-restore-attributes] stanza

attribute pattern = {preserve | refresh}

Specifies those attributes to preserve from the failover cookie to the credential
and those to refresh when a user authenticates using a failover cookie.

There can be multiple attribute entries.

The standard plug-in pattern matching rules apply except that character
comparisons are not case sensitive.

Rules that appear earlier in the stanza take precedence over those that appear
later in the stanza. If an attribute does not match any of the entries then it is not
included in the failover cookie. If an attribute is not present in the failover
cookie then it will not be preserved regardless of the configuration of this
stanza.

There are no defaults for this entry.

Example:

myvalue_failover_* = refresh
my_value_* = preserve

[forms]

This stanza contains the configuration details for the forms-based login module.

[forms] stanza

login-form = form name

The form displayed to prompt the user for authentication information.

An entry can be either:

v A macro HTML file located on the translated plug-in HTML directory,
install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

See “Macro support” on page 9 for information on plug-in supported macros.

Default value: login.html

Example: login-form =http://www.organization.com/TAM/forms/
login_form.html

login-uri = uri

Appendix C. [pam-authn] 251

The URI that receives submitted login details.

The login details must be submitted to this URI with the user's name specified
in the POST data attribute, username, and the user's password specified in the
POST data attribute, password.

Default value: /pkmslogin.form

Example: login-uri = /pkmslogin.form

create-ba-hdr = {yes | no}

Set to yes, the supplied username and password is provided in a BA header to
the destination application. Set to no, the supplied username and password is
not provided in a BA header to the destination application

Default value: no

Example: create-ba-hdr = yes

use-utf8 = {true | false}

Enables or disables UTF8 string encoding for BA headers.

Default value: true

Example: use-utf8 = false

[fsso]

Lists the login forms to be intercepted by the Forms Single Sign-On module.

[fsso] stanza

login-page-stanza = form name

One or more entries can be specified that point to other stanzas containing the
details of each login form to be intercepted.

Default value: login-form-1

Example:

login-page-stanza = login-form-1
login-page-stanza = login-form-2

The example configuration above requires two extra stanzas, [login-form-1]
present by default and [login-form-2] which would need to be created.

[http-hdr]

This stanza contains the entries for the http-hdr authentication and session
modules.

[http-hdr] stanza

header = header type

252 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

All supported header types must be configured in this entry. These are the
header types passed to the external authentication mechanism for
authentication.

There are no default values for this entry.

Example: header = entrust-client

auth-source = header

Controls whether the configured authentication data (header) is retrieved from a
HTTP header or from a cookie. The default will be to retrieve the data from a
HTTP header.

Syntax: auth-source = [header|cookie]

Default: header

Example: auth-source = header

[http-method-perms]

This stanza is where you define the permissions required to perform a request
using a particular HTTP method.

This stanza can be specified for specific virtual hosts by creating a stanza of the
form, [http-method-perms:virtual-host].

See “Plug-in ACL permissions” on page 130 for an explanation of plug-in ACL
permissions.

[http-method-perms] stanza

http method = permission

The <default> entry defines the permissions required for any methods not
explicitly specified elsewhere in this stanza.

Default values:

<default> = [PDWebPI]r
OPTIONS = [PDWebPI]r
GET = [PDWebPI]r
HEAD = [PDWebPI]r
POST = [PDWebPI]r
PUT = [PDWebPI]m
TRACE = [PDWebPI]r
PROPFIND = [PDWebPI]R
PROPPATCH = [PDWebPI]M
MKCOL = [PDWebPI]N
COPY = [PDWebPI]r
MOVE = [PDWebPI]rd

[ihs]

This stanza contains the configuration entries specific to Security Access Manager
IBM HTTP Server Plug-in.

[ihs] stanza

query-contents = query contents program

Appendix C. [pam-authn] 253

Specifies the query contents program to use for browsing the IBM HTTP Server
Web space by the pdadmin> object list command. This parameter can be
overridden on a per branch basis by specifying a value for it in a stanza named
[ihs:branch]. For example, [ihs:/PDWebPI/lotus.com].

Default value: /opt/pdwebpi/bin/wpi_ihs_ls

Example: query-contents = /opt/pdwebpi/bin/wpi_ihs_ls

query-log-file = log file location

Location of log file for errors encountered by the query contents program.

Default value: install-path/log/msg__pdwebpi-ls.log

Example (Windows): query-log-file = C:\PROGRA~1\Tivoli\POLICY~1\log\
msg_pdwebpi-ls.log

doc-root = apache-branch-doc-root

Specifies the documentation root that provides the Web space browse capability
needed for performing pdadmin> object list commands. This parameter is set
by the configuration utility when setting up virtual hosts - it is specified on a
per-policy branch basis in an [ihs:branch] stanza, for example
[ihs:/PDWebPI/lotus.com].

There is no default value for this entry.

Example (UNIX): doc-root =/usr/local/ibm.com/doc/root

[iis]

This stanza contains the configuration entries for the IIS Web server.

[iis] stanza

query-contents = query contents program

Specifies the query contents program for browsing the IIS Web space by
pdadmin. This parameter can be overridden on a per branch basis by specifying
a value for it in a stanza named [iis:branch], for example, [iis:/PDWebPI/
lotus.com]

Default value: install-path/bin/pdwpi-iis-ls.exe

Example: query-contents = /opt/pdwebpi/bin/wpi_iis_ls

query-log-file = path to query log file

Location of log file for errors encountered by the query contents program.

Default value: query-log-file = install-path/log/msg_pdwebpi-ls.log

Example (Windows): query-log-file = C:\PROGRA~1\Tivoli\POLICY~1\log\
msg_pdwebpi-ls.log

log-file = log file name

254 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Defines the log file for error and trace messages from the IIS plug-in, that are
kept separate from the Authorization Server's log file in order to ensure
consistency of the files. If specified as a relative path, the location is relative to
the log sub-directory of the installation directory. If specified as an absolute
path, the absolute path is used.

Default value: msg_pdwebpi-iis.log

Example: log-file = msg_pdwebpi-iis.log

use-error-pages = {yes | no}

In certain situations the authorization server will need to send an error code to
the client; for example, in the case of a request for authorization information -
401.

The IIS server can be configured to send back a specific body for these error
codes.

This parameter controls whether the IIS configured pages for the error code are
sent back to client, or whether some simple constructed pages are sent instead.
By default the simple constructed pages are sent back instead of the configured
IIS error pages. System performance may be effected if the IIS error pages are
chosen.

Default value: no

Example: use-error-pages = yes

iis5-always-in-data-stream = {yes | no}

For IIS 5 (Windows 2000), some applications also implemented as IIS filters
generate additional Web server requests while performing their own processing.
In order for these requests to be intercepted, the Security Access Manager
Plug-in for Microsoft IIS must be configured to always remain in the data
stream.

For performance reasons, the Security Access Manager Plug-in will normally
remove itself from the data stream when it has finished processing a request. To
force the plug-in to remain in the data stream and ensure that requests
generated by other filters during their processing are intercepted, you must
enable this configuration parameter.

This parameter may NOT be overridden on a per-virtual host basis. Any
changes to this parameter require IIS to be restarted before they will take affect.

By default, the Security Access Manager Plug-in removes itself from the data
stream when it has finished processing a request.

This configuration parameter is specific to IIS 5 (Windows 2000) and is ignored
for later versions.

Default value: no

Example: iis5-always-in-data-stream = no

authenticate-by-redirect = {yes | no}

Appendix C. [pam-authn] 255

This parameter controls whether or not redirects are used to trigger Web server
authentication (web-server-authn authentication module) or client certificate
authentication (cert authentication module).

By default redirects are used. This ensures that all application types that may be
hosted by IIS can be protected by these Security Access Manager authentication
modules.

If redirects are not used, the type of application that may not be protected by
Security Access Manager are those that are implemented as IIS filters.

Since these authentication methods require interaction with the Security Access
Manager IIS extension, an IIS filter application that handles the request
(typically based on URL pattern matching) may completely handle the request
prior to control being passed to the extension. To ensure that the extension gains
control, the client is redirected to a URL handled only by the extension.

If this is not necessary for your application, a performance improvement can be
gained by disabling authenticate-by-redirect. This applies particularly to
applications where the initial (or all) requests are POST requests with a
significant amount of data in the request body.

When redirects are used in this authentication process, the POST body data
must be cached, which involves transfer of the data to and from the
authorization server. Disabling redirects removes the need to cache this data,
since user agents will typically not submit the POST data until any HTTP 401
authentication exchanges have completed.

Changes to this parameter require restarting IIS before taking effect.

This parameter may be qualified by the IIS Web site name. For example, the
following specifies that for all Web sites except "Web Site 2" redirects will not be
used:

[iis]
authenticate-by-redirect = no
[iis:Web Site 2]
authenticate-by-redirect = yes

Default value: yes

Example: authenticate-by-redirect = yes

fallback-to-server-port = {true| false}

When following redirects to non-standard ports, some browsers do not include
the non-standard port in the Host header of the redirected request. This causes
any subsequent redirects to target the standard port (80 for HTTP, 443 for
HTTPS) rather than the non-standard port. This may cause these requests to fail.

Normally, the information in the Host header should be used to target redirects
back to this server. Setting this configuration parameter to true overrides this
and, if the Host header does not include port information, will fallback to the
server's listening port as the default (rather than standard port for the protocol).

Changes to this parameter will not take affect until the Web server has been
restarted.

This is a global parameter and may not be set on a per-virtual host basis nor on
a per-branch basis.

Default value: false

Example: fallback-to-server-port = false

256 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

[iv-headers]

This stanza contains configuration entries for the iv-headers authentication and
post-authorization module.

[iv-headers] stanza

accept = {all | iv-creds | iv-user | iv-user-l | iv-remote-address |
iv-remote-address-ipv6}

Specifies the headers to accept as proof of authentication from a proxy.

Default value: all

Example: accept = all

generate = {all | iv-creds | iv-user | iv-user-l | iv-groups | iv-remote-address |
iv-remote-address-ipv6 | server-name}

Specifies the headers to generate when forwarding a request from a proxy.

Default value: all

Example: generate = iv-creds

server-name-header = header name

The name of the header to use when server-name is present in the list of values
to generate.

Default value: iv-server-name

Example: server-name-header = iv-server-name

use-utf8 = {true | false}

Enables or disables UTF8 string encoding for iv-headers.

Default value: true

Example: use-utf8 = false

[ldap]

This stanza contains the configuration entries for LDAP.

[ldap] stanza

ldap-server-config

Indicates the location of the ldap.conf file.

This entry is set by the configuration.

bind-dn

Indicates the Distinguished Name of the daemon.

This entry is set by the configuration.

bind-pwd

Indicates the password for the daemon.

This entry is set by the configuration.

ssl-enabled = {yes | no}

Appendix C. [pam-authn] 257

Indicates whether SSL is enabled.

This entry is set by the configuration.

ssl-keyfile

Indicates path/filename of the SSL keyfile.

This entry is set by the configuration.

ssl-keyfile-dn

Indicates the certificate label in the SSL keyfile, if present.

This entry is set by the configuration.

ssl-keyfile-pwd

Indicates the SSL keyfile password.

This entry is set by the configuration.

cache-enabled = {yes | no}

Enable and disable the local LDAP cache.

Default value: yes

Example: cache-enabled = yes

cache-user-size = number of entries

The number of entries in the LDAP user cache.

This optional value is ignored if cache-enabled is set to no.

Default value: 256

Example: cache-user-size = 256

cache-group-size = number of entries

The number of entries in the LDAP group.

This optional value is ignored if cache-enabled is set to no.

Default value: 64

Example: cache-group-size = 64

cache-policy-size = number of entries

The number of entries in the LDAP policy.

This optional value is ignored if cache-enabled is set to no.

Default value: 20

Example: cache-policy-size = 20

cache-user-expire-time = number of seconds

The amount of time (in seconds) until a user entry in the cache is considered
stale and is discarded.

This optional value is ignored if cache-enabled is set to no.

Default value: 30

Example: cache-user-expire-time = 30

cache-group-expire-time = number of seconds

258 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The amount of time (in seconds) until a group entry in the cache is considered
stale and is discarded.

This optional value is ignored if cache-enabled is set to no.

Default value: 300 (5 minutes)

Example: cache-group-expire-time = 300

cache-policy-expire-time = number of seconds

The amount of time (in seconds) until a policy entry in the cache is considered
stale and is discarded.

This optional value is ignored if cache-enabled is set to no.

Default value: 30

Example: cache-policy-expire-time = 30

cache-group-membership = {yes | no}

Indicates whether group membership information should be cached.

This optional value is ignored if cache-enabled is set to no.

Default value: yes

Example: cache-group-membership = yes

cache-use-user-cache = {yes | no}

Indicates whether to use the user cache information or not.

This optional value is ignored if cache-enabled is set to no.

Default value: yes

Example: cache-use-user-cache = yes

cache-return-registry-id = {yes | no}

Indicates whether to cache the user identity as it is stored in the registry, or
cache the value as entered during authentication.

This optional value is ignored if cache-enabled is set to no.

Default value: no

Example: cache-return-registry-id = no

prefer-readwrite-server = (yes | no}

Indicates whether to select writable LDAP server when available.

Default value: no

Example: prefer-readwrite-server = yes

auth-using-compare = {yes | no}

Indicates whether to perform authentication using LDAP bind or comparing
passwords.

Default value: yes

Example: auth-using-compare = no

default-policy-override-support = {yes | no}

Appendix C. [pam-authn] 259

When set to yes, no user Policy will be checked, only the default Policy is
checked (saves some LDAP searches).

This option is disabled by default.

Example: default-policy-override-support = yes

user-and-group-in-same-suffix = {yes | no}

Indicates whether the groups are defined in the same LDAP suffix as the user.

This entry is commented by default.

Example: user-and-group-in-same-suffix = yes

login-failures-persistent = {yes | no}

Indicates whether the tracking of login failures is persistent (maintained in the
registry) or done in local process cache.

If not set, the default is: no

Example: login-failures-persistent= yes

[login-form-1]

The stanza name comes from that configured in the [fsso] stanza.

Login forms are identified by a 2 stage pattern matching process. Forms single
sign-on (FSSO) intercepts all pages matching the regular expression configured in
the login-page entry. Login forms within those pages are located by matching the
action attribute of HTML form elements against the regular expression configured
in the login-form-action entry.

[login-form-1] stanza

login-page = login page regular expression

Specifies a pattern, using a regular expression, that uniquely identifies requests
for an application's login page when using the plug-in's forms single sign-on
functionality. The configured pattern is compared against the request URI.

Default value: *login.html

Example: login-page =/cgi-bin/getloginpage*

login-form-action = action attribute regular expression

Specifies a pattern, using a regular expression, that identifies the action attribute
within the login form when using the plug-in's forms single sign-on
functionality. If there are multiple matches then the first is used.

Default value: /cgi-bin/*login*

Example: llogin-form-action = *

argument-stanza = stanza name

260 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

This entry specifies the stanza that lists the fields and data required for
completing the login form.

Default value: auth-data

The entries for the default are discussed under the heading [auth-data] earlier
in this chapter. See “[auth-data]” on page 215.

Example: argument-stanza = form1-data

[login-redirect]

This stanza contains details for the login-redirect pre-authorization module. For
this module to work correctly it must be configured before the account
management pre-authorization module.

[login-redirect] stanza

redirect-uri = redirect uri

Defines the URI to which a user is redirected upon successful authentication.
The specified URI can either be a relative URI or an absolute URI.

The URI can also contain macros. Refer to “Macro support” on page 9 for
information on plug-in supported macros.

There is no default value for this entry.

[ltpa]

This stanza contains details for the LTPA cookie based post authorization and
authentication modules. This module is designed to allow single sign-on capability
with a WebSphere server.

[ltpa] stanza

ltpa-keyfile = full path of keyfile

Full path name of the LTPA key file.

There is no default value for this entry.

ltpa-stash-file = password stash file location

Location of the password stash file. This entry takes priority over the
ltpa-password entry. If no stash file is present then this entry should
commented out.

There is no default value for this entry.

ltpa-password = password in lieu of stash file

The password to use in lieu of stash file.

There is no default value for this entry.

ltpa-cookie-name = name of the cookie containing the LTPA token

The name of the cookie that contains the LTPA token.

The default value is LtpaToken.

Example: ltpa-cookie-name = myLTPACookie

Appendix C. [pam-authn] 261

ltpa-lifetime = lifetime of the LTPA cookie in seconds

The lifetime in seconds of the LTPA cookie.

There is no default value for this entry.

Example: ltpa-lifetime = 30

[ltpa2]

The [ltpa2] module of the configuration file deals with the LtpaToken2 cookie,
which is used by IBM WebSphere Application Server.

[ltpa2] stanza

ltpa-keyfile = full path of keyfile

Full path name of the LTPA key file.

There is no default value for this entry.

ltpa-stash-file = password stash file location

Location of the password stash file. This entry takes priority over the
ltpa-password entry. If no stash file is present then this entry should
commented out.

There is no default value for this entry.

ltpa-password = password in lieu of stash file

The password to use in lieu of stash file.

There is no default value for this entry.

ltpa-cookie-name = name of the cookie containing the LTPA token

The name of the cookie that contains the LTPA token.

The default value is LtpaToken2.

Example: ltpa-cookie-name = myLTPA2Cookie

ltpa-lifetime = lifetime of the LTPA cookie in seconds

The lifetime in seconds of the LTPA cookie.

There is no default value for this entry.

Example: ltpa-lifetime = 30

For more details, see “Handling LtpaToken2 cookies” on page 100.

[modules]

This stanza declares all available authentication methods with their associated
shared library names. This includes the methods used for session identification,
pre-authorization and post-authorization processing.

[modules] stanza

module name = shared library name

262 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The shared libraries declared in this stanza must exist in the pdwebpi/lib
directory. Shared library names are specified without any operating-system-
specific prefix (such as lib) and any operating-system-specific suffix (such as
dll). An alternative to the default searching path for library files can be defined
in the [module-mgr] stanza.
The module entries relate to the following module types:
acctmgmt — Account Management
BA — Basic Authentication
cert — Certificate
failover — Failover
forms — Forms
fsso — Forms Single Sign-On
ip-addr — IP Address
iv-headers — IV Headers
session-cookie — session Cookie
ssl-id — SSL ID
tag-value — Tag Value
http-hdr— HTTP Header
token— Token
ltpa — LTPA
ecsso — e-Community Single Sign-On
cdsso — Cross Domain Single Sign-On
login-redirect— Login redirect
ntlm — NTLM
spnego — SPNEGO
web-log — Web Log
boolean-rules — Boolean Rules
switch-user — Switch User
dynurl — Dynamic URL
cred-refresh— Credential Refresh
web-server-authn — Web server authentication
ext-auth-int — External Authentication Interface
dsess — Distributed Session

Default values:

acctmgmt = pdwpi-acct-mgmt-module
BA = pdwpi-ba-module
cert = pdwpi-certificate-module
failover = pdwpi-failovercookie-module
forms = pdwpi-forms-module
fsso = pdwpi-fsso-module
ip-addr = pdwpi-ipaddr-module
iv-headers = pdwpi-iv-headers-module
session-cookie = pdwpi-sesscookie-module
ssl-id = pdwpi-sslsessid-module
tag-value = pdwpi-tag-value-module
http-hdr = pdwpi-httphdr-module
token = pdwpi-token-module
ltpa = pdwpi-ltpa-module
ltpa2 = pdwpi-ltpa2-module
ecsso = pdwpi-ecsso-module
cdsso = pdwpi-cdsso-module
login-redirect = pdwpi-loginredirect-module
spnego = pdwpi-spnego-module
ntlm = pdwpi-ntlm-module
web-server-authn = pdwpi-websvrauth-module
web-log = pdwpi-web-log-module
boolean-rules = pdwpi-boolean-rules-module
switch-user = pdwpi-su-module
dynurl = pdwpi-dynurl-module
cred-refresh = pdwpi-cred-refresh-module
ext-auth-int = pdwpi-ext-auth-int-module
dsess = pdwpi-dsess-module

Appendix C. [pam-authn] 263

[module-mgr]

This stanza contains details for the proxy module manager.

[module-mgr] stanza

path = directory location

This entry specifies the location for shared libraries. More than one path entry
can be specified. The plug-in library directory is always searched last.

There is no default entry for this value.

Example for UNIX: path = /opt/pdwebpi/lib

verify-step-up-user = {true | false}

This entry determines whether in the event of a step-up operation the new user
ID must match any pre-existing user ID.

When set to true and a different authenticated user ID is used, a generic
authorization server error page is returned to the user. This page can be
customized if so desired.

Default value: false

Example: verify-step-up-user = false

[ntlm]
The [ntlm] stanza holds the configuration entries for the NTLM authentication
module available on Windows platforms.

This stanza holds the configuration entries for the NTLM authentication module
available on Windows platforms.

[ntlm] stanza

use-pre-windows-2000-logon-name = {true | false}

By default, the ntlm module uses the Windows 2000 logon name to represent
the authenticated user in Security Access Manager. This is the username portion
of the username@domain.com logon name.

This entry permits pre-Windows 2000 logon names to represent the
authenticated user in Security Access Manager. This is the username portion of
the DOMAIN\USERNAME logon name. This parameter is ignored if Security
Access Manager uses Active Directory as its registry. When Active Directory is
used the user's Security Access Manager user name is always the username
portion of the username@domain.com logon name.

Default value: false

Example: use-pre-windows-2000-logon-name = true

use-single-authentication-connection = {true | false}

264 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Set to true for the parallel NTLM authentications to succeed. Setting this value
to false is not advisable unless the first and second phases of the NTLM
authentication require different connections.

Default value: true

Example: use-single-authentication-connection = true

[p3p-header]

This stanza specifies the P3P compact policy that applies to all HTTP cookies set.

This stanza can be specified for specific virtual hosts by creating a stanza of the
form, [p3p-header:virtual-host].

[p3p-header] stanza

p3p-element = element

This entry is used to specify elements to add to the P3P header besides the
compact policy configured with the other configuration items in this stanza. A
reference to a full XML policy can be supplied.

This entry is disabled by default.

Example: p3p-element = policyref="/w3c/p3p.xml"

access = {none | all | nonident | contact-and-other | ident-contact | other-ident}

This entry specifies the access the user has to the information contained within
the cookie and the information linked to the cookie.

Default value: none

Example: access = all

disputes = {true | false}

Specifies whether the full P3P policy contains some information regarding
disputes over the information contained within the cookie.

Default value: false

Example: disputes = true

remedies = {correct | money | law}

Specifies the possible remedies for disputes. If not specified, no remedy
information is included in the policy.

This entry is disabled by default.

Example: remedies = money

non-identifiable = {true | false}

When set to true, this parameter specifies that no information in the cookie, or
information linked to by the cookie, personally identifies the user in any way.
Valid values are true or false.

This parameter is disabled by default.

Example: non-identifiable = false

Appendix C. [pam-authn] 265

purpose = {urrent | admin | develop | tailoring | pseudo-analysis |
pseudo-decision | individual-analysis | individual-decision | contact | historical
| telemarketing | other-purpose}

This entry specifies the purpose of the information in the cookie and linked to
by the cookie. For all values except current, an additional specifier may be
configured. The possible values are always, opt-in, and opt-out.

Default:

purpose = current
purpose = other-purpose:opt-in

Example: purpose = current:always

recipient = {ours | delivery | same | unrelated | public | other-recipient}

This entry specifies the recipients of the information in the cookie, and linked to
by the cookie.

Default value: ours

Example: recipient = delivery

retention = {no-retention | stated-purpose | legal-requirement |
business-practices | indefinitely}

This entry specifies how long the information in the cookie or linked to by the
cookie is retained.

Default value: no-retention

Example: retention = indefinitely

categories = {physical | online | uniqueid | purchase | financial | computer |
navigation | interactive | demographic | content | state | political | health |
preference | location | government | other-category}

This entry specifies the type of information stored in the cookie or linked to by
the cookie.

Default value: uniqueid

Example: categories = physical

[pdweb-plugins]

This stanza defines the virtual hosts the plug-in will protect as well as other global
configuration parameters.

[pdweb-plugins] stanza

virtual-host = virtual host name

The virtual-host configuration parameter defines a new virtual host. The value
of the parameter corresponds to the name of the stanza used to specify the
configuration of that virtual host

There are no default values for this entry.

Example:

virtual-host = foo.com
virtual-host = Default Web Server
virtual-host = foo.com - HTTP only

web-server = {apache | ihs | iis}

266 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

This entry specifies the Web server type in use.

There is no default value for this entry.

Example: web-server = apache

windows-file-system = {true|false}

This entry indicates to the Authorization Server that precautions should be
taken to avoid security issues related to URIs representing Windows file system
resources. When enabled, any access to a URI with path elements that look like
Windows short path names are forbidden. In particular path elements ending
with ~digit are rejected.

On Windows systems this parameter is set to true by default. On UNIX systems
it is set to false.

Example: windows-file-system = true

case-sensitive = {true | false}

This entry indicates to the Authorization Server that URIs of differing case are
to be treated differently. When not set, URIs are converted to lower case when
constructing the corresponding Access Manager object name against which an
authorization decision is to be made.

On UNIX systems this parameter is set to true. On Windows systems it is set to
false.

Example: case-sensitive = true

late-lockout-notification = {yes | no}

The plug-in returns an error page (acct_locked.html) that notifies the user of
the penalty for reaching or exceeding the maximum value set by the
max-login-failures policy. This stanza entry specifies whether this notification
occurs when the user reaches the max-login-failures limit, or at the next login
attempt after reaching that limit.

The default setting for new installations is no. The default setting for migrated
installations is yes.

Example: late-lockout-notification = no

terminate-on-reauth-lockout = {true | false}

The entry controls whether the login session will be terminated in the event
that:

v The user registry policy setting, max-login-failures, is set and

v The maximum number of authentication login failures is reached.

Default value: true

Example: terminate-on-reauth-lockout = true

log-file = absolute or relative pathname

Appendix C. [pam-authn] 267

This entry specifies the name of the log file that captures status and error
messages. Plug-in auditing is configured in the [aznapi-onfiguration] stanza.

The value for log-file can be specified either as an absolute or relative pathname.
When logging to Tivoli Common Directory is enabled, relative pathnames are
applied relative to the product's common logging directory, determined by
appending AMZ/logs to the value of the tivoli_common_dir entry in the
pd.conf file.

If logging to Tivoli Common Directory is not enabled, relative pathnames are
applied relative to /var/pdwebpi/log on UNIX systems or the product's
installation directory on Windows systems.

Default value: msg_pdwebpi.log

Example: log-file = msg_pdwebpi.log

logs = number

Specifies the number of log files to create before re-using the first log file. To
enable log file rollover both this entry and log-entries must be set to some
positive integer.

When the authorization server is restarted the log file generation number is reset
to 1.

This entry cannot be specified for specific virtual hosts.

Default value: 0

Example: logs = 5

log-entries = number

This entry controls the number of log entries written to a log file before rolling
over to a new log. To enable log file rollover both this entry and logs must be
set to some positive integer.

This entry cannot be specified for specific virtual hosts.

Default value: 0

Example: log-entries = 500

mpa-enabled = {true | false}

This entry enables or disables MPA plug-in functionality.

This entry can be specified for specific virtual hosts by adding it to a
[virtual-hosts] stanza.

Default value: false

Example: mpa-enabled = true

mpa-protected-object = object name

This entry defines the object against which the MPA authorization decision is
made. If the configured object name is not an absolute object name (that is, it
does not commence with a /) it is prepended with the root object space
configured for the virtual host.

This entry can be specified for specific virtual hosts by adding it to a
[virtual-hosts] stanza.

Default value: /PDWebPI

Example: mpa-protected-object = /PDWebPI

268 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

user = process name

This entry specifies the user name for the manager and proxy processes.

This entry is not used on Windows systems.

Default value: pdwebpi

Example: user = pdwebpi

group = process name

This entry specifies the group name(s) for the manager and proxy processes.
More than one group may be specified.

This entry is not used on Windows systems.

Default value: pdwebpi,ivmgr

Example: group = pdwebpi,ivmgr

use-accept-language-header = {true | false}

This entry determines whether the 'accept-language' HTTP header is used when
attempting to locate the language for the generated HTML response.

This entry can be specified for specific virtual hosts by defining it in a
[virtual-host] stanza.

Default value: true

Example: use-accept-language-header = true

use-accept-charset-header = {true | false}

This entry determines whether the 'accept-charset' HTTP header is used when
attempting to locate the charset in which to decode elements of a HTTP request,
or generate a HTML response. The default value (if not found within this
configuration file) is true.

This entry can be specified for specific virtual hosts by defining it in a
[virtual-host] stanza.

Default value: false

Example: use-accept-charset-header = false

max-cached-http-body = HTTP body data cached

This entry specifies the maximum amount of HTTP body data cached for any
given request. If the amount of body data exceeds the configured maximum, all
of the body data is discarded.

The worker-size entry within the [proxy-if] stanza controls the amount of
memory allocated for any given request. The max-cached-http-body size, at a
minimum, should conform to the following algorithm: (max-cached-http-body *
4/3 * 2 + 3000) <= worker-size This algorithm assumes that 3000 bytes is
enough memory to hold:

v The request less any POST data;

v The returned form less the cached POST data.

If the size of the request plus the size of the returned form is likely to exceed
3000 bytes you must either increase the worker-size entry or decrease the
max-cached-http-body entry.

Default value: 2500

Example: max-cached-http-body = 2500

Appendix C. [pam-authn] 269

send-p3p-header = {true | false}

This entry controls the addition of a P3P header containing a compact policy
statement to any HTTP responses in which it has set cookies.

Before enabling this entry, configure the entries within the [p3p-header] stanza
to match your organization's privacy policy.

This entry can be specified for specific virtual hosts by defining it in a
[virtual-host] stanza.

Default value: false

Example: send-p3p-header = true

tag-value-prefix =

This entry specifies the optional prefix added to credential attribute names used
for tag value HTTP headers. The tag-value module will search for credential
attributes using this prefix; the session ID credential attribute will be added with
this prefix; and the su module will add this prefix to the credential attribute it
uses to store the administrator's username.

This entry can be specified for specific virtual hosts by defining it in a
[virtual-host] stanza.

There is no default value for this entry.

Example: tag-value-prefix =tag-value

use-uri-encoded-session-id = {true | false}

This entry controls whether or not the session ID specified in the terminate
session administration task should be URI encoded.

Default value: true

Example: use-uri-encoded-session-id = true

remove-headers = {true | false}

This entry specifies whether any headers that the tag-value module may set
should be removed from the request before tag-value processing. Removing
these headers ensures that they cannot be inserted by a malicious user agent to
spoof the values derived from the credential.

WARNING!
Disabling the remove header capability may introduce a security vulnerability to
your web site. Applications relying on tag-value headers not being removed
from the request prior to tag-value processing must be reimplemented to avoid
the possibility of tag-value http headers being spoofed by malicious user agents.
WARNING!

This entry is provided for the purposes of backwards compatibility with plug-in
version 4.1 and earlier.

This entry can be specified for specific virtual hosts by defining it in a
[virtual-host] stanza.

Default value: true

Example: remove-headers = true

pass-thru-authn-error = {true | false}

270 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

This entry controls whether any authentication system errors are passed through
to the user.

This entry can be specified for specific virtual hosts by defining it in a
[virtual-host] stanza.

Default value: false

Example: pass-thru-authn-error = true

ipv6-support = {true | false}

This entry controls support for IPv6, determining whether or not credential
attributes containing IPv6 addresses are added.

This entry can be over-ridden on a per-virtual host basis by defining it in a
[virtual-host] stanza.

Default value: false

Example: ipv6-support = false

compat-ipv4-support = {true | false}

This entry controls backwards compatibility support for IPv4, determining
whether or not credential attributes containing IPv4 addresses are added.

Enabling this option implies a slight performance hit due to additional
credential attributes. Disabling this option improves performance, but breaks
backward compatibility.

This entry can be over-ridden on a per-virtual host basis by defining it in a
[virtual-host] stanza.

Default value: false

Example: compat-ipv4-support = false

resend-pdwebpi-cookies = {true | false}

This entry defines whether Web Plug-In cookies should be sent with each
request.

Default value: false

Example: resend-pdwebpi-cookies = true

fips-140-2-mode-enabled = {true | false}

Enables or disables the FIPS 140-2 compliant cryptographic operations within
the plug-in.

Default value: false

Example: fips-140-2-mode-enabled = false

config-data-log = msg__pdwebpi_cfgdata.log

The plug-in can be configured to dump configuration data at startup,
highlighting non-default values and any inheritance to virtual-host qualified
stanzas.

The entries in this stanza specify the location of the file to which the
configuration data is logged. Dumps in this file are prefixed and suffixed with
separators and prefixed with a timestamp.

httponly-pdwebpi-cookies = false

Appendix C. [pam-authn] 271

Defines whether Web Plug-In security cookies should be sent with the HttpOnly
attribute set.

This parameter may be overridden on a per-virtual host basis by specifying it in
the appropriate [virtual-host] stanza. It can also be overloaded for any module
which creates a security cookie by specifying it in the appropriate [module]
stanza. This specification will take precedence over a specification in the
[virtual-host] stanza.

Default value: false

Example: httponly-pdwebpi-cookies = false

[performance]

This stanza contains entries for fine tuning the performance of the plug-in. This
stanza can be defined for specific virtual hosts by creating a
[performance:virtual-host] stanza.

[performance] stanza

enable-pop = {true | false}

This entry enables or disables the enforcement of Protected Object Policies
(POPs). For customers not requiring the authorization functionality provided by
POPs a performance improvement can be achieved by them with this entry.

POPs are required for all of the following features:

v Step-up Authentication

v Multi-Factor Authentication

v Forced Reauthentication

v IP Address based authorization

v QoP based authorization

v Warning mode

Default value: true

Example: enable-pop = true

add-session-id-to-cred = {true | false}

This entry enables or disables the addition of the session ID to the session
credential. This feature should be set to true if the session ID is to be inserted
into a request header using tag-value.

Default value: true

Example: add-session-id-to-cred = false

[proxy-if]

This stanza contains general configuration entries that relate to communication
between the plug-in and the Authorization Server.

[proxy-if] stanza

id = ID or shared memory file

272 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

The following entry defines the ID (or shared memory file name) for the proxy
interface. This ID must match that which is used by the plug-ins.

There is no default value for this entry.

number-of-workers = number of worker threads

The number of worker threads that handle plug-in requests.

Default value: 10

Example: number-of-workers = 10

worker-size = amount of memory

The amount of memory pre-allocated for each worker thread.

Default value: 10000

Example: worker-size = 10000

cleanup-interval = period of time in seconds

Time in seconds between each clean-up of shared memory.

Default value: 300

Example: cleanup-interval = 420

max-session-lifetime = period of time in seconds

The time in seconds that the plug-in waits for a response from the Authorization
Server before timing out.

Default value: 300

Example: max-session-lifetime = 300

[sessions]

This stanza contains configuration entries common to all session modules.

[sessions] stanza

max-entries = number of entries

Defines the maximum number of sessions which may be stored within a single
instance of a session module.

Default value: 4096

Example: max-entries = 4096

timeout = period of time in seconds

Defines the maximum lifetime of a session in seconds.

Default value: 3600

Example: timeout = 3000

inactive-timeout = period of time in seconds

Defines the length of idle time in seconds required for a session before it will
time out.

Default value: 600

Example: inactive-timeout = 720

Appendix C. [pam-authn] 273

reauth-lifetime-reset = {yes | no}

If set to yes then the credential lifetime timer will be reset upon successful
reauthentication.

Default value: no

Example: reauth-lifetime-reset = yes

reauth-grace-period = 0

Specifies the amount of time in seconds the client has as a grace period within
which to successfully perform reauthentication if the credential would otherwise
have expired.

Default value: 0

Example: reauth-grace-period = 30

session-id-cred-attribute = tagvalue_session_index

Controls the name of the credential attribute that records the session ID in the
credential.

For correct integration with the Command Audit and Reporting Service (CARS),
this attribute name must be tagvalue_session_index. Upgrading or migrating
users should migrate from the previous user_session_id attribute name
totagvalue_session_index.

Default value: tagvalue_session_index

Example: session-id-cred-attribute = tagvalue_session_index

[session-cookie]

This stanza contains the configuration entries for the session cookie based session
module. The session cookie module allows session state information to be
maintained by a cookie.

[session-cookie] stanza

use-same-cookie = {yes | no}

Specifies whether the HTTP and HTTPS protocols should use the same session.

Default value: no

Example: use-same-cookie = yes

http-cookie-name = cookie name

Specifies the name of the cookie to use for sessions established over HTTP. If
use-same-cookie is enabled then this entry is ignored and the cookie name
specified by the https-cookie-name configuration entry is used for sessions
created as either HTTP or HTTPS.

Default value: PDWPI-SESSION-COOKIE

Example: http-cookie-name = PDWEBPI-SESSION-COOKIE

https-cookie-name = cookie name

274 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Specifies the name of the cookie to use for sessions established over HTTPS. If
use-same-cookie is enabled then this entry is used for sessions created as either
HTTP or HTTPS.

Default value: PDWPI-SSL-SESSION-COOKIE

Example: https-cookie-name = PDWEBPI-SSL-SESSION-COOKIE

[spnego]
The [spnego] stanza holds the configuration entries for the SPNEGO module.

[spnego] stanza

spnego-krb-service-name = service name

This mandatory entry stores the service name to which the plug-in authenticates
during initialization of the spnego authentication module. The service name
must match the template NAME[@hostname] where hostname is the fully
qualified DNS domain name of the plug-in host.

Default value: HTTP

Example: spnego-krb-service-name = HTTP@host.tivoli.com

spnego-krb-keytab-file = path

The path name of the Kerberos configuration file (krb5.keytab). This is used
only on UNIX platforms.

Default value: /etc/krb5.keytab

Example: spnego-krb-keytab-file = /etc/krb5.keytab

use-domain-qualified-name = (true | false)

SPNEGO authentication provides a principal name of the form
shortname@domain.com. By default, Security Access Manager uses only the
shortname as the user ID. If this parameter is set to true, then Security Access
Manager will include the domain as part of the Security Access Manager user
ID.

This configuration option has no effect if Active Directory Multi Domain is
being used as the Security Access Manager user registry.

Default value: false

Example: use-domain-qualified-name = false

use-single-authentication-connection = (true | false)

When running on a Windows platform, one of the protocols that may be
negotiated when using SPNEGO is NTLM. Set to true for the parallel NTLM
authentications to succeed. Setting this value to false is not advisable unless the
first and second phases of the NTLM authentication require different
connections.

Default value: true

Example: use-single-authentication-connection = true

Appendix C. [pam-authn] 275

[switch-user]

This stanza contains the definitions for the switch user pre-authorization module.

[switch-user] stanza

switch-user-form = file

Specifies the name of the HTML file which is returned to the client upon the
request to 'su'.

An entry can be either:

v A macro HTML file located on the translated plug-in HTML directory,
install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

Refer to “Macro support” on page 9 for information on plug-in supported
macros.

Default value: switchuser.html

Example: switch-user-form = http://www.organization.com/TAM/su/
su_form.html

switch-user-uri = URI

This entry holds the URI used to invoke the switch user function. Note that the
standard authorization policy is not applied to this URI (that is, there is no ACL
checking). Instead, group based authorization checking is conducted.

Default value: /switchuser.html

Example: switch-user-uri = /switchuser.html

switch-user-post-uri = uri

The following entry contains the name of the URI which the 'su' form is
submitted to.

Default value: /pkmssu.form

Example: switch-user-post-uri = /pkmssu.form

[tag-value]

This stanza contains all of the details for the tag/value based post-authorization
module.

[tag-value] stanza

cache-definitions = {yes | no}

This entry indicates whether to cache the tag-value definitions which are
attached to the object space. When set to yes, the proxy will need to be restarted
to pick up any changes to the tag-value definitions.

Default value: yes

Example: cache-definitions = yes

cache-refresh-interval = 60

276 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Defines the refresh interval in seconds for the cache of definitions.

Default value: 60

Example: cache-refresh-interval = 120

use-utf8 = {true | false}

Enables or disables UTF8 string encoding for tag-value data.

Default value: true

Example: use-utf8 = false

use-uri-encoding = {true | false}

The following entry defines whether to perform URI encoding of the tag-value
data.

Default value: true

Example: use-uri-encoding = false

default-header-value = NOT_FOUND

The following entry defines a default value to use for headers when no
corresponding attribute is found in the user's credential.

If no default header value is specified, no header will be added. If a default
header value is specified any headers without matching credential attributes will
be set to the default value.

Default value: NOT_FOUND

Example: default-header-value = NOT_FOUND

[token]

This stanza contains entries for the token-card module.

[token] stanza

token-login-form = login form

Specifies the name of the token-card login page.

An entry can be either:

v A macro HTML file located on the translated plug-in HTML directory,
install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

Refer to “Macro support” on page 9 for information on plug-in supported
macros.

Default value: tokenlogin.html

Example: token-login-form = http://www.organization.com/TAM/token-card/
login.html

next-token-form = next token form

Appendix C. [pam-authn] 277

This entry specifies the token-card form to request the next token.

An entry can be either:

v A macro HTML file located on the translated plug-in HTML directory,
install_path /nls/html/lang /charset

v A valid redirect URI. The redirect URI can be either absolute or server relative
and can also contain macros.

Refer to “Macro support” on page 9 for information on plug-in supported
macros.

Default value: nexttoken.html

Example: next-token-form = http://www.organization.com/TAM/token-card/
next-token.html

[unprotected-resource-cache]

This stanza contains configuration entries related to the unprotected resource
cache. Unprotected resource cache configuration is global and cannot be specified
for a particular branch.

[unprotected-resource-cache] stanza

enabled = {yes | no}

Enables or disables the unprotected resource cache.

Default value: no

Example: enabled = yes

max-poll-interval = time period in seconds

The maximum time period (in seconds) that will elapse before unprotected
resource cache policy changes are propagated from the authorization server to
the plug-ins. Valid values are cardinal numbers >= 5.

Default value: 30

Example: max-poll-interval = 60

[user-agent]

This stanza creates mappings between user agents, as defined in the user-agent
HTTP header, and a specific locale.

[user-agent] stanza

user-agent-pattern = locale-string

278 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

These entries define the mapping from user-agent to language and character set.
The user-agent header is only used when either or both accept-language and
accept-charset headers are not found, or if the use of those headers is disabled.

The stanza includes a list of patterns that are matched, in the order specified, to
the contents of the user-agent header. For a list of the available wildcard
characters refer to Appendix F, “Special characters allowed in regular
expressions,” on page 295.

If a match is found then the directory for the corresponding language and
charset is used. In addition to specifying a language and character set for a
given user-agent pattern, it is also possible to specify a directory. In this case the
directory name specified is used rather than the one for the charset when
sending Security Access Manager pages. This directory must be located under
the specified language directory.

There are no default values for this entry.

Example: KDDIOTS22* = ja,sjis

[web-log]

This stanza contains the configuration entries for the web-log transaction module.
This module specifies the information to be included in the Web server access log
file, and for the Sun Java System, IHS and Apache Web servers, the
REMOTE_USER CGI variable.

[web-log] stanza

format-string = string value

Format string which is used to construct the Web log user name, and for the
Sun Java System, IHS and Apache web servers, the REMOTE_USER CGI
variable.

This string can also contain control sequences; that is:

v %u- access manager user name

v %d- access manager user DN

v %w- Web server user name

Default value: %u

Example: format-string = AM User: %u(%d)

unauth-user-string = string value

The string which is used to denote an unauthenticated Security Access Manager
user (%u) within the Web server access log file.

Default value: -

Example: unauth-user-string = Unauth user

unauth-server-user-string = string value

The string which is used to denote an unauthenticated Web server user (%w)
within the Web server access log file.

If unset, this entry defaults to the value set for unauth-user-string.

Example: unauth-server-user-string = Unauth Web server user

Appendix C. [pam-authn] 279

[web-server-authn]

This stanza contains configuration entries for the web-server-authn authentication
module which is available on Windows only.

[web-server-authn] stanza

use-pre-windows-2000-logon-name = {true | false}

By default, the web-server-authn module uses the Windows 2000 logon name to
represent the authenticated user in Security Access Manager. This is the
username portion of the username@domain.com logon name.

This entry allows the pre-Windows 2000 logon name to represent the
authenticated user in Security Access Manager.

This entry is ignored when the Security Access Manager registry is configured
to be Active Directory. With Active Directory the user's Security Access Manager
user name is always the 'username' portion of the 'username@domain.com'
logon name.

Default value: false

Example: use-pre-windows-2000-logon-name = true

[wpiconfig]

This stanza contains information set by the configuration program to aid in the
unconfiguration. There is no reason to modify the entries in this stanza.

280 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Appendix D. Module quick reference

Authentication is the method of identifying an individual process or entity that is
attempting to log on to a secure domain. The authentication method by which an
individual or process uses to access a plug-in protected domain can take one of
many forms. IBM IBM Security Access Manager Plug-in for Web Servers supports
a number of authentication methods. These authentication methods are listed with
an appropriate description in the following tables.

Table 31. Plug-in authentication method/module reference

Authentication method/module Description

BA
pdwpi-ba-module

Basic Authentication authentication module.

May also be configured as a session and
post-authorization module.

forms
pdwpi-forms-module

HTML Forms authentication module.

Authenticates using a username and password
submitted through a form.

When in use, this module must also be configured as a
pre-authorization module.

ip-addr
pdwpi-ipaddr-module

Client IP Address authentication module.

Provides authentication based solely on the client's IP
address. An http-request authentication mechanism
must be provided by the customer to map the IP
address information to a Security Access Manager
principal.

May also be configured as a session module.

http-hdr
pdwpi-httphdr-module

HTTP Header authentication module.

Provides authentication based solely on the value of a
nominated HTTP header in the request. An http-request
authentication mechanism must be provided by the
customer to map the header information to a Security
Access Manager principal.

May also be configured as a session module.

token
pdwpi-token-module

Token authentication module.

IBM Security Access Manager Plug-in for Web Servers
supports authentication using a token passcode
supplied by the client. This authentication uses a two
factor logon based on RSA SecureID jobs.

When in use, must also be configured as a
post-authorization module.

© Copyright IBM Corp. 2000, 2012 281

Table 31. Plug-in authentication method/module reference (continued)

Authentication method/module Description

cert
pdwpi-certificate-module

Client certificate authentication module.

The subject DN of the client certificate is mapped by
the cert-ssl authentication mechanism to a Security
Access Manager principal name. The cert-ssl
authentication mechanism requires that the subject DN
of the client certificate map directly to the DN of a
Security Access Manager user in the user registry.

This module ignores requests to authenticate requests
that did not arrive over an SSL session and so can be
safely configured for virtual hosts that handle
authorization of both HTTP and HTTPS requests.

failover
pdwpi-failovercookie-module

Failover Cookie authentication module.

This module accepts a failover cookie to authenticate a
user.

When in use, this module must also be configured as a
post-authorization module.

iv-headers
pdwpi-iv-headers-module

IV Headers authentication module.

Provides authentication based on the values of the
iv-user, iv-user-l, iv-creds, or iv-remote-address HTTP
header in the request. This is useful for using
single-signing on to IBM Security Access Manager
Plug-in for Web Servers when a user has already
authenticated to a front-end proxy server.

In order to be trusted, the request must have arrived
using an authenticated session with a front-end proxy
server (for example a WebSEAL junction). The proxy
must authenticate as a user with Proxy ([PDWebPI]p)
permission on the protected object space branch of the
virtual host being accessed.

For authentication using iv-remote-address header, a
http-request authentication mechanism must be
provided by the customer to map the IP address
information to a Security Access Manager principal.

This module may also be configured as a
post-authorization module and session module.

ecsso
pdwpi-ecsso-module

e-Community Single sign-on authentication module.

This module must be configured as an authentication
module for virtual hosts other than the master
authentication server that is participating in the
e-community.

When in use, this module must also be configured as a
pre-authorization module.

unauth
pdpwi-unauth-module

Unauthenticated user authentication module.

This module is listed here for completeness. It is
implicitly always configured as the lowest precedence
authentication module and is used to generate a
credential for unauthenticated users.

282 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 31. Plug-in authentication method/module reference (continued)

Authentication method/module Description

ltpa
pdwpi-ltpa-module

LTPA authentication module

Accepts and authenticates users based on an LTPA
cookie. The LTPA cookie can either be provided by
WebSEAL or by a WebSphere server.

spnego
pdwpi-spnego-module

SPNEGO authentication module

Utilizes the standard SPNEGO authentication protocol
within Windows LAN domains to achieve a Single
Sign-on solution for plug-in implementations on IIS.

cdsso
pdwpi-cdsso-module

CDSSO authentication module

Allows cross domain single sign-on between different
domains.

ext-auth-int
pdwpi-ext-auth-int
-module

External authentication interface module.

Allows a credential to be created based on information
supplied by a back-end application.

Table 32. Windows-specific authentication modules

Module Description

ntlm
pdwpi-ntlm-module

NTLM authentication module.

NTLM is a Windows-specific authentication module
that uses the Windows 2000 logon name to represent
the authenticated user in Security Access Manager.

web-server-authn
pdwpi-websvrauth-module

Web server authentication module.

The Web server authentication modules is an
authentication module for Windows platforms. The
module uses the Windows 2000 logon name to
represent the authenticated user in Security Access
Manager.

Table 33. Plug-in session module reference

Module Description

BA
pdwpi-ba-module

Basic Authentication session module.

Use the Basic Authentication Authorization header
value as a session key.

When in use, must also be configured as an
authentication module.

May also be configured as a post-authorization module.

ip-addr
pdwpi-ipaddr-module

IP Address session module.

Uses an authenticated client IP address as the session
key.

When in use, it must also be configured as an
authentication module.

Appendix D. Module quick reference 283

Table 33. Plug-in session module reference (continued)

Module Description

http-hdr
pdwpi-httphdr-module

HTTP Header session module.

Uses an authenticated HTTP header as the session key.

session-cookie
pdwpi-sesscookie-module

Session Cookie session module.

This module generates and accepts cookies for use in
identifying sessions. Generally used only as a
low-priority session identification mechanism.

ssl-id
pdwpi-sslsessid-module

SSL Session ID session module.

Uses the SSL Session ID as a session key. Note that
although this module is provided in the Windows
distribution of IBM Security Access Manager Plug-in for
Web Servers, the Microsoft Internet Information
Services Web Server does not provide SSL Session ID
information to the plug-in so SSL Session IDs cannot be
used as session keys for IIS.

iv-headers
pdwpi-iv-headers-module

IV headers session module

Uses IV headers to maintain session state.

ltpa
pdwpi-ltpa-module

LTPA session module.

Uses LTPA cookies to maintain session state.

Table 34. Plug-in pre-authorization module reference

Module Description

boolean-rules
pdwpi-boolean-rules-module

Boolean Rules pre-authorization module.

switch-user
pdwpi-switch-user-module

Switch User pre-authorization module.

dynurl
pdwpi-dynurl-module

Dynamic URL pre-authorization module.

acctmgt
pdwpi-acct-mgmt-module

Account Management pre-authorization module.

This module provides the logout (/pkmslogout), change
password (/pkmspasswd), help (/pkmshelp) features.

cred-refresh
pdwpi-cred-refresh-module

Credential Refresh pre-authorization module.

forms
pdwpi-forms-module

Forms pre-authorization module.

token
pdwpi-token-module

Token pre-authorization module.

IBM Security Access Manager Plug-in for Web Servers
supports authentication using a token passcode
supplied by the client. This authentication uses a two
factor log on based on RSA SecureID fobs.

When in use, the token module must also be configured
as an authentication module.

284 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Table 34. Plug-in pre-authorization module reference (continued)

Module Description

ext-auth-int
pdwpi-ext-auth-int-module

External authentication interface pre-authorization
module.

login-redirect
pdwpi-loginredirect-module

Login Redirect pre-authorization module.

When performing a login using any of the plug-in
supported methods, the user is redirected to a
configured page upon successful authentication.

ecsso
pdwpi-ecsso-module

e-Community single sign-on pre-authorization module.

All virtual hosts participating in an e-community must
have the ecsso module configured as a
post-authorization module.

This module must also be configured as an
authentication module for all participants other than the
master authentication server.

Table 35. Plug-in post-authorization module reference

Module Description

forms
pdwpi-forms-module

HTML Forms post-authorization module.

This module handles the submission of the form data
during an HTML Forms-based logon.

When in use, it must also be configured as an
authentication module.

This module may also set the BA header from the
submitted username and password.

BA
pdwpi-ba-module

Basic Authentication post-authorization module.

Modifies the BA header seen by the Web server or by
creating it from GSO lockbox data.

failover
pdwpi-failovercookie-module

Failover Cookie post-authorization module.

This module generates a failover cookie for the client.

When in use, the failover cookie module must also be
configured as an authentication module.

iv-headers
pdwpi-iv-headers-module

IV Headers post-authorization module.

This module inserts user identity information as IV
headers in to the request before allowing the request to
be handled by the Web server. This is useful for
providing single sign on to an application hosted by the
Web server. The headers that can be added are iv-user,
iv-user-l, iv-groups, iv-creds, and iv-remote-address.

This module may also be configured as an
authentication module and session module.

Appendix D. Module quick reference 285

Table 35. Plug-in post-authorization module reference (continued)

Module Description

tag-value
pdwpi-tag-value-module

Tag/Value post-authorization module.

This module inserts additional extended attributes from
the users credential as HTTP headers in the request
before allowing the request to be handled by the Web
server. These extended attributes typically correspond to
user attributes from the user registry.

ltpa
pdwpi-ltpa-module

LTPA Cookie post-authorization module.

This module inserts a WebSphere Application Server
Lightweight Third Party Authentication (LTPA) cookie
into the request before allowing the request to be
handled by the Web server. This provides single sign on
to a WebSphere Application Server being hosted by the
Web server.

cdsso
pdwpi-cdsso-module

CDSSO post-authorization module.

boolean-rules
pdwpi-boolean-rules-module

Boolean Rules post-authorization module.

fsso
pdwpi-fsso-module

Forms single sign-on module.

Table 36. Response module reference

Module Description

fsso
pdwpi-fsso-module

Forms single sign-on response module.

ext-auth-int
pdwpi-ext-auth-int-module

External authentication interface response module.

Table 37. Transaction module reference

Module Description

web-log
pdwpi-web-log-module

Web log post-authorization module.

286 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Appendix E. Command quick reference

pdwebpi_start

Starts, restarts, and stops the Security Access Manager Plug-in for Web Servers
process on UNIX installations. Note that the Plug-in for Web Servers is
automatically started and stopped when the Security Access Manager base product
is started or stopped. Also, displays the status of all Web servers.

Note: If needed, the pdwebpi_start command can be used to control the Plug-in
for Web Servers independently of the Security Access Manager base product.

Syntax

pdwebpi_start start

pdwebpi_start stop

pdwebpi_start restart

pdwebpi_start status

Parameters

pdwebpi_start {start|stop|restart|status} where:

start
Starts the Plug-in for Web Servers process on UNIX installations.

stop
Stops the Plug-in for Web Servers process on UNIX installations.

restart
Stops and then restarts the Plug-in for Web Servers process on UNIX
installations.

status
Provides status information of the Plug-in for Web Servers on UNIX
installations.

Availability

This command is located in the default installation directory:
/opt/pdwebpi/sbin/

When an installation directory other than the default is selected, this utility is
located in the sbin directory under the installation directory (for example,
install_dir/sbin/).

Return Codes

The following exit status codes can be returned:

0 The command completed successfully.

© Copyright IBM Corp. 2000, 2012 287

1 An error occurred.

pdwebpi

Returns the current version of Security Access Manager Plug-in for Web Servers.
Also, specifies whether to run Plug-in for Web Servers as a service or run it in the
foreground.

Syntax

pdwebpi [–foreground] [–version]

Purpose

The pdwebpi utility returns the current version of Security Access Manager Plug-in
for Web Servers. Also, specifies whether to run Plug-in for Web Servers as a
daemon or run it in the foreground.

Note: When using Windows Remote Desktop Connection, you must run the
plug-in as a service.

Parameters

–foreground
Runs the Plug-in for Web Servers binary in the foreground as opposed to
running as a daemon.

–version
Specifies the version information for the Plug-in for Web Servers
installation.

Availability

This utility is located in the following default installation directories:
v On UNIX:

/opt/pdwebpi/bin

v On Windows:
C:\Program Files\Tivoli\pdwebpi\bin

When an installation directory other than the default is selected, this utility is
located in the /bin directory under the installation directory (for example,
installation_directory/bin).

Return Codes

0 The utility completed successfully.

1 The utility failed. When a utility fails, a description of the error and an
error status code in hexadecimal format is provided (for example,
0x14c012f2). Refer to the IBM Security Access Manager for Web: Error
Message Reference. This reference provides a list of the Security Access
Manager error messages by decimal or hexadecimal codes.

288 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

pdwpi-version

Lists the version and copyright information for the Security Access Manager
Plug-in for Web Servers installation.

Syntax

pdwpi-version [–h] [–V] [–l | binary [binary ...]]

Parameters

–h Displays a help or usage message.

–l Specifies long list, which lists the versions of all binaries, not just the package
version.

–V Displays the version information for the pdwpi-version binary.

binary [binary]
Displays version information for specified binaries, or for all files if no binary
files are specified.

Availability

This command is located in the following default installation directories:
v UNIX systems:

/opt/pdwebpi/bin/

v On Windows systems:
C:\Program Files\Tivoli\pdwebpi\bin\

When an installation directory other than the default is selected, this utility is
located in the bin directory under the installation directory (for example,
install_dir\bin\).

Return Codes

The following exit status codes can be returned:

0 The command completed successfully.

1 An error occurred.

pdwpicfg –action config

Configures the Security Access Manager Plug-in for Web Servers.

Syntax

pdwpicfg –action config –admin_id admin_id –admin_pwd admin_pwd –host
–auth_port authorization_port_number –web_server {iis|ihs|apache} –version
–iis_filter {yes|no} –web_directory server_install_directory –vhosts virtual_host_id
–ssl_enable {yes|no} –keyfile keyfile –key_pwd key_password –key_labelkey_label
–ssl_port ssl_port_number

pdwpicfg –action config –interactive {yes|no}

pdwpicfg –action config –rspfile response_file

Appendix E. Command quick reference 289

pdwpicfg –operations

pdwpicfg –help [options]

pdwpicfg –usage

pdwpicfg –?

Parameters

–admin_id admin_id
Specifies the administration user identifier (normally, sec_master).

–admin_pwd admin_pwd
Specifies the password for the administrative user admin_id.

–auth_port authorization_port_number
Specifies the port number of the authorization server. The default port number
value is 7237.

–help [options]
Lists the option name and a short description. If one or more options are
specified, it lists each option and a short description.

–host
Specifies the host name of the server. The default value is the configured host
name.

–interactive {yes|no}
Enables interactive mode for the command if yes; otherwise, disables
interactive mode for the command. The default value is yes.

–iis_filter {yes|no}
Enables the Internet Information Server (IIS) filtering if yes; otherwise, disables
the IIS filtering. The default value is yes.

–keyfile keyfile
Specifies the LDAP SSL key file. There is no default value. Specify this option
when you are not running the command in interactive mode and when you
have enabled SSL between the Plug-in for Web Servers and LDAP.

–key_label key_label
Specifies the LDAP SSL key label. There is no default value. Specify this option
when you are not running the command in interactive mode and when you
have enabled SSL between the Plug-in for Web Servers and LDAP.

–key_pwd key_password
Specifies the LDAP SSL key file password.

–operations
Lists each of the option names one after another with no description.

–rspfile response_file
Optionally provides the fully qualified path and file name for the Plug-in for
Web Servers response file to use during silent installation. A response file can
be used for configuration or unconfiguration. There is no default response file
name. The response file contains stanzas and option=value pair stanza entries.
To use response files, see the procedures in the IBM Security Access Manager for
Web: Installation Guide.

290 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

–ssl_enable {yes|no}
Enables SSL communications with LDAP if yes; otherwise, disables SSL
communications with LDAP. The default value is no.

–ssl_port ssl_port_number
Specifies the LDAP SSL port. The default port number value is 636.

–usage
Displays the usage syntax for this command. Also displays an example.

–vhosts virtual_host_id
Specifies the virtual hosts that are to be protected. The value should be in the
format of a comma separated list of virtual host IDs. There should be no
spaces between the virtual host IDs.

–web_directory server_install_directory
Specifies the Web server installation directory. For the Sun Java System Web
Server this is the base installation directory of the Web server. For Apache and
IHS Web servers this is the directory containing the Web server's configuration
file. This option is used only if the Web server being configured is apache, ihs.
The defaults are:
apache:/usr/local/apache/conf
ihs [AIX]:/usr/HTTPServer/conf
ihs [Linux]:/usr/IBMHTTPServer/conf
ihs [Solaris]: /usr/IBMHTTPD/conf

–web_server {iis|ihs|apache}
Specifies the Web server type on which the Plug-in for Web Servers is to be
installed. The choices are: iis for Internet Information Server, ihs for IBM
HTTP Server , or apache for the Apache Server. This option defaults to the type
and location of the configured Web server.

–? Displays the usage syntax for this command. Also displays an example.

Availability

This command is located in the following default installation directories:
v UNIX systems:

/opt/pdwebpi/bin/

v On Windows systems:
C:\Program Files\Tivoli\pdwebpi\bin\

When an installation directory other than the default is selected, this utility is
located in the bin directory under the installation directory (for example,
install_dir\bin\).

Return Codes

The following exit status codes can be returned:

0 The command completed successfully.

1 The command failed.

When a command fails, a description of the error and an error status code in
hexadecimal format is provided (for example, 0x14c012f2). Refer to the IBM
Security Access Manager for Web: Error Message Reference. This reference provides
a list of the Security Access Manager error messages by decimal or
hexadecimal codes.

Appendix E. Command quick reference 291

pdwpicfg –action unconfig

Unconfigures the Security Access Manager Plug-in for Web Servers.

Syntax

pdwpicfg –action unconfig –admin_id admin_id –admin_pwd admin_pwd –force
{yes|no} –remove {none|acls|objspace|all} –vhosts virtual_host_id

pdwpicfg –action unconfig –interactive {yes|no}

pdwpicfg –action unconfig –rspfile response_file

pdwpicfg –operations

pdwpicfg –help [options]

pdwpicfg –usage

pdwpicfg –?

Parameters

–admin_id admin_id
Specifies the administration user identifier (normally, sec_master).

–admin_pwd admin_pwd
Specifies the password for the administrative user admin_id.

–force {yes|no}
Forces the unconfiguration process to proceed even if the policy server cannot
be contacted. The default value is no.

–help [options]
Lists the option name and a short description. If one or more options are
specified, it lists each option and a short description.

–interactive {yes|no}
Enables interactive mode for the command if yes; otherwise, disables
interactive mode for the command. The default value is yes.

–operations
Lists each of the option names one after another with no description.

–remove {none|acls|objspace|all}
Specifies whether to remove the object space or the ACLs or both as part of the
unconfiguration process. The default value is none.

–rspfile response_file
Provides the fully qualified path and file name for the Plug-in for Web Servers
response file to use during silent installation. A response file can be used for
configuration or unconfiguration. There is no default response file name. The
response file contains stanzas and option=value pair stanza entries. To use
response files, see the procedures in the IBM Security Access Manager for Web:
Installation Guide.

–usage
Displays the usage syntax for this command. Also displays an example.

292 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

–vhosts virtual_host_id
Specifies the identifiers of the virtual hosts that are to be unconfigured. The
value can be in the format of a comma separated list of virtual host IDs. There
should be no spaces between the virtual host IDs.

–? Displays the usage syntax for this command. Also displays an example.

Availability

This command is located in the following default installation directories:
v UNIX systems:

/opt/pdwebpi/bin/

v On Windows systems:
C:\Program Files\Tivoli\pdwebpi\bin\

When an installation directory other than the default is selected, this utility is
located in the bin directory under the installation directory (for example,
install_dir\bin\).

Return Codes

The following exit status codes can be returned:

0 The command completed successfully.

1 The command failed.

When a command fails, a description of the error and an error status code in
hexadecimal format is provided (for example, 0x14c012f2). Refer to the IBM
Security Access Manager for Web: Error Message Reference. This reference provides
a list of the Security Access Manager error messages by decimal or
hexadecimal codes.

Appendix E. Command quick reference 293

294 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Appendix F. Special characters allowed in regular expressions

The following table lists the special characters allowed in regular expressions used
in the pdwebpi.conf configuration file.

* Matches zero or more characters

? Matches any one character

\ Escape character (for example, \? matches ?)

[acd] Matches character a, c, or d (case-sensitive)

[^acd] Matches any character except a, c, or d (case-sensitive)

[a-z] Matches any character between a and z (lower case letter)

[^0-9] Matches any character not between 0 and 9 (not a number)

[a-zA-Z] Matches any character between a and z (lower case) or A and Z
(upper case)

© Copyright IBM Corp. 2000, 2012 295

296 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2012 297

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

298 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer
Entertainment, Inc., in the United States, other countries, or both and is used under
license therefrom.

Notices 299

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

300 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

Index

Special characters
[error-pages] 22

A
accept parameter 96
accessibility xvi
acctmgmt stanza 213
ACL permissions 130
ACL policies 129
ACL policy

default 131
add-hdr 63
ADI 191
allow-login-retry 177
AMWebARS

configuring 196
anonymous client processing 144
Apache

considerations 20
apache stanza 215
API service 42
applying unauthenticated HTTPS 145
architecture 1
audit configuration 38
audit records 34
auditcfg parameter 38
auditing 34
auditlog parameter 38
auth–data stanza 215
authentication 3

configuration for virtual hosts 51
configuration overview 49, 57
ext-auth-int 102
forms 64
goals of 5
methods 53

order of 53
quick reference 281

multi-factor 139
network based POP policy 142
NTLM 79
overview 5
step-up 137
Web server 80
with Basic Authentication 61
with certificates 66
with failover cookies 81
with HTTP headers 97
with IP addresses 98
with IV headers 94
with LTPA cookies 99
with SecurID tokens 68
with SPNEGO 72

authentication challenge
process flow 54

authentication mechanism
Basic Authentications 61
certificates 68
forms 65

authentication mechanism (continued)
HTTP header 98
switch user 27
tokens 71
with IP addresses 99
with IV headers 96

authentication mechanism entries 58
authentication mechanisms 58
authentication methods 59
authentication modules

quick reference 281
authentication strength POP

IP address for sessions 136
authentication upgrade process 4
authentication-levels stanza 53, 216
authentication-mechanisms stanza 216
authorization decision information

configuring retrieval 195
overview 191
retrieving 192

authorization process 4
authorization server

configuration 11
aznapi-configuration stanza 222
aznapi-entitlement-services stanza 226

B
BA headers

manipulating 62
UTF-8 encoding 66

BA stanza 227
back-end applications

maintaining session state 185
backup 205
Basic Authentication 61, 124
boolean-rules stanza 228
branch parameter 14

C
cache

database settings 42
cache database 34
cache inactivity timeout 123
cache-definitions 110
cache-refresh-interval 110
cache-refresh-interval parameter 42
CARS 34
CDSSO 165

enabling 167
cdsso credential attributes 168
cdsso stanza 228
cdsso_key_gen 88
cdsso-domain-keys stanza 231
cdsso-incoming-attributes stanza 230
cdsso-token-attributes stanza 229
cert-cdas entries 58
cert-ssl entry 57
certificates 66

cleanup-interval parameter 12
commands 287

change of password 59
help 59
logout 59

Common Auditing and Reporting
Service 34

common-modules stanza 49, 231
components 1
configuration

API service 42
audit logs 34
auditing 38
authentication 49

methods 53
authentication for virtual hosts 51
authentication methods 59
authentication overview 57
Authorization Server 11
Basic authentication for

authentication 61
Basic Authentication for sessions 124
cache 42
cache database 34
certificate authentication 66
credential refresh 44
default 58
e-community single sign-on 175
external authentication interface 103
failover cookies for authentication 81
failover for LDAP 29
for Web servers 16
forms for authentication 64
HTTP headers for authentication 97
HTTP headers for sessions 126
HTTP request caching 44
IP address for authentication 98
IP address for sessions 126, 127
IV headers for authentication 94
iv-headers for sessions 127
Kerberos 73
login redirection 101
logs 34
LTPA cookies for authentication 99
NTLM authentication 79
of pdwebpimgr.conf 8
P3P 31
parameters

general 211
pdwebpi.conf 8
plug-in 8
post-authorization 56
server specific 15
session cookies for sessions 125
session/credentials cache 121
SPNEGO authentication 73
SPNEGO for authentication 72
SSL session ID for sessions 124
stanzas 211
switch user 25

© Copyright IBM Corp. 2000, 2012 301

configuration (continued)
tag value for post-authorization 106,

109
token response pages 71
tokens for authentication 68
virtual hosts 13
Web server authentication 80

cookies
HttpOnly flag 33

create-ba-hdr 66
creating a BA Header 66
cred-refresh stanza 232
credential

acquisition 6
credential refresh 43
cross domain

single sign-on 165
Cross-site scripting

protection 33
custom response page 59
customizing

error pages 22

D
db-file parameter 42
DB2 xiv
disable-ec-cookie 177
doc-root 16
dsess stanza 233
dsess-cluster stanza 235
dsess-cluster:cluster_name stanza 237
dynamic ADI retrieval 195
dynamic URLs

access control 187
dynurl 187
dynurl stanza 239

E
e-community single sign-on

configuration 175
configuration example 181
cookie 173
example 181
features and requirements 171
overview 171
process flow 172

e-community single signon
encrypting vouch-for token 175

e-community-name 175
ecsso credential attributes 179
ecsso Domain Keys 178
ecsso stanza 240
ecsso-domain-keys stanza 244
ecsso-incoming-attributes stanza 245
ecsso-token-attributes stanza 245
education xvi
enable-failover-cookie-for-domain 93
EPAC 6
error messages 9
error pages

customizing 22
error-pages stanza 246
errors, customizing for IIS 9
ext-auth-int stanza 247

Extended Privilege Attribute Certificate
(EPAC) 6

external authentication interface 102

F
failover authentication 81

configuration 86
domain-wide 86
library 82

Failover cookie
single sign-on 153

failover cookies 81, 83, 85
configure cookie lifetime 89
enable domain-wide cookies 93
encrypting/decrypting cookie

data 88
failover for LDAP 29
failover stanza 248
failover-add-attributes stanza 250
failover-cdsso 88
failover-certificate 88
failover-cookie-lifetime 89
failover-cookies-keyfile 88
failover-http-request 88
failover-password 88
failover-restore-attributes stanza 251
failover-token-card 88
failure reasons

supplying 194
features 2
forms

single sign-on 157
forms authentication 64
forms stanza 251
fsso stanza 252

G
generate parameter 96
Global Single sign-on - GSO 154
gskcapicmd xiv
gskikm.jar xiv
GSKit

documentation xiv
GSO 154

H
header types

specifying 97
Headers

P3P 30
HTML response forms 65
HTTP error messages 9
HTTP headers 126

authentication 97
single sign-on 150

HTTP request caching 44
http-hdr stanza 252
http-method-perms stanza 253
http-request entry 57
HttpOnly flag 33

I
IBM

Software Support xvi
Support Assistant xvi

id parameter 11, 14
ihs

specific configuration 15
IHS

considerations 20
ihs stanza 253
iis

specific configuration 15
IIS

considerations 20
IIS errors

customizing 9
iis stanza 254
iKeyman xiv
installation directory 7
IP addresses 98, 126, 127
IP addresses and ranges 142
iplanet see Sun ONE 15
is-master-authn-server 175
IV headers 150

authentication 94
UTF-8 encoding 96

iv-creds 95
iv-groups 95
iv-headers 127
iv-headers stanza 257
iv-remote-address 95
iv-user 95
iv-user-l 95

K
Kerberos

Active Directory 75
mapping 75

key xiv

L
languages

support for 45
LDAP

configuring failover 29
LDAP server

on z/OS xiv
ldap stanza 257
ldap-ext-cred-tags stanza 109
libfailoverauthn shared library 88
listen-flags parameter 42
local authentication configuration

entries 57
log on

forcing 145
log-file 16
logaudit parameter 38
logflush parameter 38
logging 34
login-form 65
login-form-1 stanza 260
login-redirect 101
login-redirect stanza 261
login-uri 65

302 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

logon policy 132
logsize parameter 38
LTPA

post-authorization processing 100
LTPA cookies 99, 151
ltpa stanza 261, 262
ltpa-keyfile 100
ltpa-password 100
ltpa-stash-file 100

M
macro support 9
master-authn-server 176
master-http-port 176
master-https-port 176
max-entries parameter 122
max-session-lifetime 12
max-session-lifetime parameter 12
messages

customizing 22
module-mgr stanza 264
modules 49

quick reference 281
modules configuration 49
modules stanza 49, 262
MPAs 110
multi-factor authentication 139
multi-lingual support 45
Multiplexing Proxy Agents 110

N
network based authentication POP

policy 142
no-mas-logout-success 178
no-mas-logout-uri 178
NTLM authentication 79
ntlm stanza 264
number-of-workers parameter 11

O
object listings 20
online

publications xi
terminology xi

overview
request handling process 3

P
P3P 30

configuring 31
p3p-header stanza 265
passwd-cdas entries 58
passwd-ldap entry 57
password policy 134
pdbackup 205
pdweb-plugin stanza 13
pdweb-plugins stanza 15, 266
pdwebpi 288
pdwebpi_start 287
pdwebpi.conf 8
pdwebpimgr.conf 8

pdwpi-version 289
pdwpicfg -action config 289
pdwpicfg -action unconfig 292
performance stanza 272
permissions

ACL 130
WebDAV 130

pkmshelp 60
pkmslogout 59
pkmspasswd 60
Platform for Privacy Headers 30
plug-in

authentication 5
configuration 11
features 2
HTTP error messages 9
installation directory 7
macro support 9
request handling 3
security policy 2
starting and stopping 8
statistics 42

plug-in process flow 1
policy

ACL 129, 131
authentication strength POP 136
controlling unauthenticated

users 145
IP addresses 142
logon 132
network based authentication

POP 142
password 134
quality of protection POP 144
reauthentication 140

conditions 141
creating and applying 141

step-up 136
unprotected resources 145
user and global 136

POP policy
algorithm 143
authentication strength - step up 136
network based authentication 142
quality of protection 144
reauthentication 140

post-authorization
login redirection 101
with tag value 106, 109

post-authorization processing 4, 56
pre-authorization processing 4
problem-determination xvi
protocols parameter 14
proxy-if stanza 11, 12, 272
publications

accessing online xi
list of for this product xi

Q
Quality of protection POP policy 144
query-contents 16
query-log-file 16

R
realm name, setting 62
reauth-grace-period 123
reauth-lifetime-reset 122
reauthentication 140
redirection after logon 101
registry

extended attributes 106, 109
regular expressions 295
request handling process

overview 3
response handling 4
root directory 7

S
SecurID token authentication 68
SecurID tokens 68
security policy 2
session cache 121
session cookie names 123
session cookies 125
session identification 3
session reauthentication reset 122
session state

maintaining 185
managing 124
with Basic Authentication 124
with HTTP headers 126
with IP addresses 126, 127
with iv-headers 127
with session cookies 125
with SSL session ID 124

session timeout 122
session-cookie stanza 274
sessions stanza 121, 273
single sign-on

concepts 149
cross domain 165
e-community 171
forms 157
GSO 154
SPNEGO 157
to proxy 152
to WebSEAL 152
using failover cookies 153
using HTTP headers 150
using LTPA cookies 151
using SPNEGO 72
Windows 73

special characters 295
SPNEGO 72, 157

enabling 78
single sign-on 72

SPNEGO authentication
configuration 73

spnego stanza 275
SSL session ID 124
stanzas

acctmgmt 213
apache 215
auth-data 215
authentication-levels 216
authentication-mechanisms 216
aznapi-configuration 222
aznapi-entitlement-services 226

Index 303

stanzas (continued)
BA 227
boolean-rules 228
cdsso 228
cdsso-domain-keys 231
cdsso-incoming-attributes 230
cdsso-token-attributes 229
common-modules 231
cred-refresh 232
dsess 233
dsess-cluster 235
dsess-cluster:cluster_name 237
dynurl 239
ecsso 240
ecsso-domain-keys 244
ecsso-incoming-attributes 245
ecsso-token-attributes 245
error-pages 246
ext-auth-int 247
failover 248
failover-add-attributes 250
failover-restore-attributes 251
forms 251
fsso 252
http-hdr 252
http-method-perms 253
ihs 253
iis 254
iv-headers 257
ldap 257
login-form-1 260
login-redirect 261
ltpa 261, 262
module-mgr 264
modules 262
ntlm 264
p3p-header 265
pdweb-plugins 266
performance 272
proxy-if 272
session-cookie 274
sessions 273
spnego 275
switch-user 276
tag-value 276
token 277
unprotected-resource-cache 278
user-agent 278
web-log 279
web-server-authn 280
wpiconfig 280

stanzas, configuration file 211
starting the plug-in 8
statistics plug-in 42
step-up 136

disabling by IP address 143
enabling 138
limitations 139

stopping the plug-in 8
strip-hdr 62
Sun ONE

specific configuration 15
supply-password 63
supply-username 63
switch user

configuration 24
enabling 25

switch user (continued)
impacts 28
process flow 24

switch-user stanza 276

T
tag value 106, 109
tag-value stanza 276
terminating user sessions 187
terminology xi
timeout

cache inactivity 123
timeout parameter 12
Tivoli Directory Integrator xiv
Tivoli Directory Server xiv
token authentication 68
token response pages 71
token stanza 277
token-cdas entries 58
trace 40

pdadmin commands 40
training xvi
troubleshooting xvi

Kerberos 79
SPNEGO 79

U
unauthenticated HTTPS 145
unauthenticated requests 145
unauthenticated users 144

controlling with policy 145
unprotected resource cache policy 145
unprotected-resource-cache stanza 278
unprotected-virtual-host parameter 13
use-utf8 177
user-agent stanza 278
utilities

pdwebpi 288
pdwebpi_start 287
pdwpi-version 289
pdwpicfg -action config 289
pdwpicfg -action unconfig 292

V
vf-argument 177
vf-token-lifetime 177
vf-url 177
virtual host branches explained 14
virtual host identification 3
virtual hosts

authentication configuration 51
configuring 13
support for 3

virtual-host parameter 13
vouch-for

request and reply 174
token 174
token encryption 175

W
Web server authentication 80
web-log stanza 279
web-server-authn stanza 280
WebDAV permissions 130
WebSEAL

single sign-on to 152
WebSphere Application Server Network

Deployment xiv
WebSphere eXtreme Scale xiv
worker threads, configuring 11
worker-size parameter 11
wpiconfig stanza 280

304 IBM Security Access Manager Version 7.0: Plug-in for Web Servers Administration Guide

����

Printed in USA

SC23-6507-02

	Contents
	Figures
	Tables
	About this publication
	Intended audience
	Access to publications and terminology
	Related publications

	Accessibility
	Technical training
	Support information

	Chapter 1. Introducing Security Access Manager Plug-in for Web Servers
	Security Access Manager Plug-in for Web Servers technology
	Basic operational components and architecture
	Plug-in features
	Support for virtual hosts

	The request handling process
	Plug-in authentication
	Credential acquisition

	Chapter 2. Configuration
	General plug-in information
	Root directory of the Security Access Manager Plug-in for Web Servers installation
	The pdwebpi.conf configuration file
	The pdwebpimgr.conf configuration file
	Starting and stopping Security Access Manager Plug-in for Web Servers
	HTTP error messages
	Macro support
	Forms related macros

	Configuring the Authorization Server
	Configuring Worker Threads
	Setting the Maximum Session Lifetime for IPC requests

	Configuring for virtual host servers
	Web-server-specific configuration
	Web server considerations

	Customizing object listings
	Command Line Arguments
	Output

	Customizing message and error pages
	Modifying existing error pages
	Creating new error pages

	Configuring switch user (SU) for administrators
	Understanding the switch user process flow
	Enabling switch user
	Configuring the switch user HTML form
	Enabling and excluding users from switch user
	Configuring the switch user authentication mechanism
	Impacting other plug-in functionality

	Configuring failover for LDAP servers
	Supporting Platform for Privacy Preferences (P3P) headers
	Configuring P3P headers

	Cross-site scripting protection
	Configuring plug-in auditing, logging, and tracing
	Using the Common Auditing and Reporting Service
	Audit records
	Auditing configuration
	Tracing Plug-in actions

	Cache database settings
	Plug-in statistics
	Configuring the authorization API service
	Credential refresh
	Configuring credential refresh

	Configuring HTTP request caching
	Configuring server-side caching parameters

	FIPS cryptographic compliance
	Language support and character sets

	Chapter 3. Authentication and request processing
	Configuring authentication
	Configuring authentication for virtual hosts
	Configuring the order of authentication methods
	Configuring post-authorization processing

	Authentication configuration overview
	Local authentication mechanisms
	External custom authentication mechanism entries
	Default configuration for plug-ins
	Configuring multiple authentication methods
	Logout, change of password and help commands
	Password change issue with Active Directory on Windows

	Configuring Basic Authentication
	Enabling Basic Authentication
	Configuring the Basic Authentication mechanism
	Setting the realm name
	Manipulating BA headers
	Specify UTF-8 encoding of BA headers

	Configuring authentication by using forms
	Enabling forms authentication
	Configuring the forms authentication mechanism
	Customizing HTML response forms
	Customizing the forms login URI
	Creating a BA Header

	Configuring certificate authentication
	Mutual authentication using certificates
	Enabling certificate authentication
	Configuring the certificate authentication mechanism

	Configuring authentication using RSA SecurID tokens
	Authentication workflow for tokens in new PIN mode
	Using token authentication with a password strength server
	Enabling token authentication
	Configuring the token authentication mechanism
	Customizing token response pages

	Configuring SPNEGO authentication
	Platform and user registry support
	Limitations
	Windows desktop single sign-on configuration
	Troubleshooting for SPNEGO, Windows desktop single sign-on, and Kerberos

	Configuring NTLM authentication (IIS platforms only)
	Configuring Web server authentication (IIS platforms only)
	Configuring failover authentication
	Failover authentication concepts
	Failover authentication configuration

	Configuring IV header authentication
	Enabling authentication using IV headers
	Configuring IV header parameters
	Specify UTF-8 encoding of IV headers
	Configuring the IV header authentication mechanism for iv-remote-address

	Configuring HTTP header authentication
	Enabling authentication using HTTP headers
	Specifying header types
	Configuring the HTTP header authentication mechanism
	Cookie authentication

	Configuring IP address authentication
	Enabling authentication using the IP address
	Configuring the IP address authentication mechanism

	Configuring LTPA Authentication
	Enabling LTPA Authentication
	Setting the Key Details
	Configuring LTPA post-authorization processing
	Handling LtpaToken2 cookies

	Configuring the redirection of users after logon
	Enabling user redirection
	Configuring user redirection parameters

	Using an external authentication service
	Enabling the external authentication interface
	Configuring the external authentication interface

	Adding extended attributes for credentials
	Mechanisms for adding extended attributes to a credential
	Entitlement service configuration

	Adding registry extended attributes to the HTTP header (tag value)
	Enabling tag value processing
	Configuring tag value parameters

	Supporting Multiplexing Proxy Agents (MPA)
	Valid session data types and authentication methods
	Authentication process flow for MPA and multiple clients
	Enabling MPA authentication
	Create a user account for the MPA
	Add the MPA account to the pdwebpi-mpa-servers group

	Extended CDAS User Mapping Rules

	Chapter 4. Managing session state
	The Session Management Server (SMS)
	Configuring the plug-in to use the SMS

	Managing Session State in non-clustered environments
	Configuring the plug-in session/credentials cache
	Maintaining session state with the SSL session ID
	Maintaining session state using Basic Authentication
	Maintaining session state with Session Cookies
	Maintaining session state using HTTP headers
	Maintaining session state using IP addresses
	Maintaining session state using LTPA cookies
	Maintaining session state using iv-headers

	Chapter 5. Security policy
	Plug-in-specific Access Control List (ACL) policies
	/PDWebPI/host or virtual_host
	Plug-in ACL permissions
	Default /PDWebPI ACL policy
	Changing The Mapping of HTTP Request Methods

	Setting a logon failure policy
	Password strength policy
	Password strength policy set by the pdadmin utility
	Specific user and global settings

	Authentication-strength Protected Object Policy (Step-up)
	Configuring levels for step-up authentication
	Enabling step-up authentication
	Step-up authentication notes and limitations

	Multi-factor authentication
	Enabling multi-factor authentication

	Reauthentication Protected Object Policy
	Conditions affecting POP reauthentication
	Creating and applying the reauthentication POP

	Network-based authentication Protected Object Policy
	Specifying IP addresses and ranges
	Disabling step-up authentication by IP address
	Network-based authentication algorithm

	Quality-of-protection Protected Object Policy
	Handling unauthenticated users (HTTP/HTTPS)
	Processing a request from an anonymous client
	Forcing user log on
	Applying unauthenticated HTTPS
	Controlling unauthenticated users with ACL/POP policies

	Policy for unprotected resources
	Configuring the unprotected resource cache
	Setting the unprotected resource cache extended POP attribute

	Chapter 6. Web single sign-on solutions
	Single sign-on concepts
	Automatically signing-on to a secured application
	Configuring single sign-on to secure applications using HTTP headers
	Single sign-on to WebSphere application server using LTPA cookies

	Single sign-on to the plug-in from WebSEAL or other proxy
	Enabling and disabling authentication using IV headers
	Configuring IV header parameters

	Using the Failover cookie for single sign-on
	Enabling single sign-on using Failover cookies

	Using global single sign-on (GSO)
	Configuring Global single sign-on

	Security Provider NEGOtiation (SPNEGO) single sign-on
	Single sign-on using forms
	Forms single sign-on process flow
	Requirements for application support
	Enabling forms single sign-on
	Configuring forms single sign-on
	Example configuration file for IBM HelpNow

	Chapter 7. Cross-domain sign-on solutions
	Cross domain single sign-on (CDSSO)
	Authentication process flow for CDSSO
	Enabling and disabling CDSSO authentication
	Encrypting the authentication token data
	Configuring the token time stamp
	Including credential attributes in the authentication tokens
	Specify the sso-create and sso-consume libraries
	Expressing CDSSO links
	Protecting the authentication token

	e-Community single sign-on
	e-Community single sign-on features and requirements
	e-Community single sign-on process flow
	The e-community cookie
	The vouch-for request and reply
	The vouch-for token
	Encrypting the vouch-for token
	Configuring an e-community
	Configuring e-community single sign-on - an example

	Chapter 8. Application integration
	Maintaining session state between the client and back-end applications
	Enabling user session ID management
	Inserting credential data into the HTTP header
	Terminating user sessions

	Providing access control to dynamic URLs
	Configuring dynamic URLs

	Chapter 9. Authorization decision information retrieval
	Overview of ADI retrieval
	Retrieving ADI from the plug-in client request
	Example: Retrieving ADI from the request header
	Example: Retrieving ADI from the request query string
	Example: Retrieving ADI from the request POST body

	Retrieving ADI from the user credential
	Supplying a failure reason
	Configuring dynamic ADI retrieval
	Configuring the plug-in to use the AMWebARS Web service

	Appendix A. DynADI Web service reference
	Basic configuration
	Configuration files
	Descriptions of dynadi.conf configuration parameters

	Editing the data tables
	Provider table
	ContainerDescriptorTable
	ProtocolTable

	Creating custom protocol plug-ins
	Overview
	Creating the protocol plug-in

	Appendix B. Using pdbackup to backup plug-in data
	Functionality
	Backing up plug-in data
	Restoring plug-in data

	Syntax
	Examples
	UNIX examples
	Windows examples
	Contents of pdinfo-pdwebpi.lst
	Additional backup data

	Appendix C. Plug-in configuration file reference
	Guidelines for configuring stanzas
	General guidelines
	Default values
	Strings
	Defined strings
	File names
	Integers
	Boolean values

	[acctmgmt]
	[apache]
	[auth-data]
	[authentication-levels]
	[authentication-mechanisms]
	[aznapi-configuration]
	[aznapi-entitlement-services]
	[BA]
	[boolean-rules]
	[cdsso]
	[cdsso-token-attributes]
	[cdsso-incoming-attributes]
	[cdsso-domain-keys]
	[common-modules]
	[cred-refresh]
	[dsess]
	[dsess-cluster]
	[dsess-cluster:cluster_name]
	[dynurl]
	[ecsso]
	[ecsso-domain-keys]
	[ecsso-incoming-attributes]
	[ecsso-token-attributes]
	[error-pages]
	[ext-auth-int]
	[failover]
	[failover-add-attributes]
	[failover-restore-attributes]
	[forms]
	[fsso]
	[http-hdr]
	[http-method-perms]
	[ihs]
	[iis]
	[iv-headers]
	[ldap]
	[login-form-1]
	[login-redirect]
	[ltpa]
	[ltpa2]
	[modules]
	[module-mgr]
	[ntlm]
	[p3p-header]
	[pdweb-plugins]
	[performance]
	[proxy-if]
	[sessions]
	[session-cookie]
	[spnego]
	[switch-user]
	[tag-value]
	[token]
	[unprotected-resource-cache]
	[user-agent]
	[web-log]
	[web-server-authn]
	[wpiconfig]

	Appendix D. Module quick reference
	Appendix E. Command quick reference
	pdwebpi_start
	pdwebpi
	pdwpi-version
	pdwpicfg –action config
	pdwpicfg –action unconfig

	Appendix F. Special characters allowed in regular expressions
	Notices
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

